Skip to main content
Log in

Evaluation of kinetic and mass transfer parameters for adsorption of clavulanic acid into natural and synthetic zeolites

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

This work investigates the adsorption of clavulanic acid using natural six cationic forms (Na+, Ca+2, Ba+2, Sr2+, K+, and Mg2+) of the X and NZ zeolites in a stirred tank reactor since the separation is an important step of the biomolecule production. A mathematical model was proposed taking into account the transport of CA molecules from the liquid phase to the surface of the adsorbent and after diffusion into the particles. The estimated kinetic and mass transfer parameters were used to evaluate adsorption rates and mass transfer resistances involved in the separation of clavulanic acid from the broth. It has been shown that mass-transfer phenomena were a limiting step in the clavulanic acid adsorption process and that the adsorption rate should be considered to evaluate the system. Amongst the materials, the synthetic zeolite NaX was selected as the most appropriate material to separate clavulanic acid because this material presented the highest values for the observed reaction rate, compensating for the external mass transfer resistance. Modeling and simulation of clavulanic acid purification using the zeolite NaX showed a satisfactory fitting of experimental data. The model was used to simulate the process and it was evaluated for its technical and economical viability by comparisons considering the influence of the solid:liquid ratio on the adsorption equilibrium time and on the hydrolysed mass of biomolecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Saudagar, P. S., S. A. Survase, and R. S. Singhal (2008) Clavulanic acid: A review. Biotechnol. Adv. 26: 335–351.

    Article  CAS  Google Scholar 

  2. Buynak, J. D. (2006) Understanding the longevity of the β-lactam antibiotics and of antibiotic/β-lactamase inhibitor combinations. Biochem. Pharmacol. 71: 930–940.

    Article  CAS  Google Scholar 

  3. Kim, H. H., S. H. Kang, and Y. K. Chang (2009) Recovery of potassium clavulanate from fermentation broth by ion exchange chromatography and desalting electrodialysis. Biotechnol. Bioproc. Eng. 14: 803–810.

    Article  CAS  Google Scholar 

  4. Park, D., Y. S. Yun, and J. M. Park (2010) The past, present, and future trends of biosorption. Biotechnol. Bioproc. Eng. 15: 86–102.

    Article  CAS  Google Scholar 

  5. Barboza, M., R. M. R. G. Almeida, and C. O. Hokka (2003) Influence of temperature on the kinetics of adsorption and desorption of clavulanic acid by ionic exchange. Biochem. Eng. J. 14: 19–26.

    Article  CAS  Google Scholar 

  6. Bersanetti, P. A., R. M. R. G. Almeida, M. Barboza, M. L. G. Araujo, and C. O. Hokka (2005) Kinetics studies on clavulanic acid degradation. Biochem. Eng. J. 23: 31–36.

    Article  CAS  Google Scholar 

  7. Forte, M. B. S., Rodrigues, M. I., Maugeri Filho, F. (2011) Clavulanic acid adsorption studies in zeolites. Adsorpt. Sci. Technol. 29: 391–404.

    Article  CAS  Google Scholar 

  8. Gupta, V. K. and Suhas (2009) Application of low-cost adsorbents for dye removal — A review. J. Environ. Manage. 90: 2313–2342.

    Article  CAS  Google Scholar 

  9. Bird, A. E., J. M. Bellis, and B. C. Gasson (1982) Spectrophotometric assay of clavulanic acid by reaction with imidazole. Analyst. 107: 1241–1245.

    Article  CAS  Google Scholar 

  10. Deuflhard, E., E. Hairer, and J. Zugck (1987) One-step and extrapolation methods for differential-algebraic systems. Numer. Math. 51: 501–516.

    Article  Google Scholar 

  11. Schwaab, M., E. C. Biscaia, J. L. Monteiro, and J. C. Pinto (2008) Nonlinear parameter estimation through particle swarm optimization. Chem. Eng. Sci. 63:1542–1552.

    Article  CAS  Google Scholar 

  12. Barboza, M., R. M. R. G. Almeida, and C. O. Hokka (2002) Intrinsic kinetic parameters of clavulanic acid adsorption by ionexchange chromatography. Ind. Eng. Chem. Res. 41: 5789–5793.

    Article  CAS  Google Scholar 

  13. Burkert, C. A. V. (2003) Separation of glucose, fructose, oligosaccharides and dextrans using zeolites. Ph.D. Thesis. University of Campinas, Campinas, Brazil.

    Google Scholar 

  14. Ruthven, D. M. (1984) Principles of adsorption and adsorption processes. Wiley, NY, USA.

    Google Scholar 

  15. Moraes, C. C., M. A. Mazutti, M. I. Rodrigues, F. Maugeri Filho, and S. J. Kalil (2009) Mathematical modeling and simulation of inulinase adsorption in expanded bed column. J. Chromatogr. A. 1216: 4395–4401.

    Article  CAS  Google Scholar 

  16. Burkert, C. A., G. N. O. Barbosa, M. A. Mazutti, and F. Maugeri (2011) Mathematical modeling and experimental breakthrough curves of cephalosporin c adsorption in a fixed-bed column. Proc. Biochem. 46: 1270–1277.

    Article  CAS  Google Scholar 

  17. Khraisheh, M. A. M., Y. S. Al-Degs, S. J. Allen, and M. N. Ahmad (2002) Elucidation of controlling steps of reactive dye adsorption on activated carbon. Ind. Eng. Chem. Res. 41: 1651–1657.

    Article  CAS  Google Scholar 

  18. Lv, L., J. He, M. Wei, and X. Duan (2006) Kinetic studies on fluoride removal by calcined layered double hydroxides. Ind. Eng. Chem. Res. 45: 8623–8628.

    Article  CAS  Google Scholar 

  19. Sulak, M. T., E. Demirbas, and M. Kobya (2007) Removal of astrazon yellow 7GL from aqueous solutions by adsorption onto wheat bran. Bioresour. Technol. 98: 2590–2598.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus B. S. Forte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forte, M.B.S., Mazutti, M.A., Filho, F.M. et al. Evaluation of kinetic and mass transfer parameters for adsorption of clavulanic acid into natural and synthetic zeolites. Biotechnol Bioproc E 16, 1223–1230 (2011). https://doi.org/10.1007/s12257-011-0210-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-011-0210-8

Keywords

Navigation