Skip to main content
Log in

A new methanol-feeding strategy for the improved production of β-galactosidase in high cell-density fed-batch cultures of Pichia pastoris Mut+ strains

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Developing novel methanol-feeding strategies for the improved production of heterologous proteins in high cell-density fed-batch cultures of Pichia pastoris has been of great interest during recent years. In this study, a recombinant P. pastoris strain (GS115/His+ Mut+) producing β-galactosidase (β-Gal) was used to investigate conventional feeding strategies and to develop a new strategy to increase the recombinant protein production during fedbatch cultures on methanol. Three types of conventional methanol-feeding strategies, including μ-stat, dissolved oxygen-stat (DO-stat) and constant methanol concentration were investigated and compared with respect to alcohol oxidase (AOX), formate dehydrogenase (FDH) and β-gal activities, and cell dry weight (CDW), methanol, and formaldehyde concentration variations during the production phase. Methanol feeding with μ-stat 0.025/h exhibited the highest β-gal activity. Supplementing ammonium and magnesium in μ-stat 0.025/h did not affect the cell growth or methanol or formaldehyde concentrations throughout the fermentation but did improved the maximum β-gal activity from 148.2 to 158.1 kU/mL. A new three-step methanol-feeding strategy was developed based on the results obtained from conventional feeding strategies, which started with μ-stat 0.025/h for 5 h, then μ-stat 0.030/h, and finally, was switched to DO-stat when maintaining the DO above 20% air saturation became difficult. Implementation of this new feeding strategy resulted in a CDW of 107.2 ± 0.7 g/L, AOX specific activity of 0.1890 ± 0.0030 U/mg CDW, and β-gal activity of 173.5 ± 2.1 kU/mL after 29 h of fermentation, which shows a 5.6, 29.1, and 15.7% increase in CDW, AOX, and β-gal activity, respectively, compared to that of μ-stat at 0.025/h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cregg, J. M. (2007) Pichia Protocols. 2nd ed. Humana Press Inc., Totowa, NJ, USA.

    Google Scholar 

  2. Lin-Cereghino, J. and J. M. Cregg (2000) Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol. Rev. 24: 45–66.

    Article  Google Scholar 

  3. Lin-Cereghino, J., P. Geoff, C. Ilgen, and J. M. Cregg (2002) Production of recombinant proteins in fermenter cultures of the yeast Pichia pastoris. Curr. Opin. Biotechnol. 13: 329–332.

    Article  CAS  Google Scholar 

  4. Macauley-Patrick, S., M. L. Fazenda, B. McNeil, and L. M. Harvey (2005) Heterologous protein production using the Pichia pastoris expression system. Yeast 22: 249–270.

    Article  CAS  Google Scholar 

  5. Cos, O., R. Ramón, J. L. Montesinos, and F. Valero (2006) Operational strategies, monitoring and control of heterologous protein production in the methylotrophic yeast Pichia pastoris under different promoters: A review. Microb. Cell Fact. 5: 17.

    Article  Google Scholar 

  6. Hartner, F. S. and A. Glieder (2006) Regulation of methanol utilisation pathway genes in yeasts. Microb. Cell Fact. 5: 39.

    Article  Google Scholar 

  7. Ren, H. T., J. Q. Yuan, and K. H. Bellgardt (2003) Macrokinetic model for methylotrophic Pichia pastoris based on stoichiometric balance. J. Biotechnol. 106: 53–68.

    Article  CAS  Google Scholar 

  8. Sola, A., P. Jouhten, H. Maaheimo, F. Sanchez-Ferrando, T. Szyperski, and P. Ferrer (2007) Metabolic flux profiling of Pichia pastoris grown on glycerol/methanol mixtures in chemostat cultures at low and high dilution rates. Microbiol. 153: 281–290.

    Article  CAS  Google Scholar 

  9. Khalilzadeh, R., S. A. Shojaosadati, N. Maghsoudi, J. Mohammadian- Mosaabadi, M. R. Mohammadi, A. Bahrami, N. Maleksabet, M. A. Nassiri-Khalilli, M. Ebrahimi, and H. Naderimanesh (2004) Process development for production of recombinant human interferon-γ expressed in Escherichia coli. J. Ind. Microbiol. Biotechnol. 31: 63–69.

    Article  CAS  Google Scholar 

  10. Siegel, R. S. and R. A. Brierley (1989) Methylotrophic yeast Pichia pastoris produced in high-cell-density fermentations with high cell yields as vehicle for recombinant protein production. Biotechnol. Bioeng. 34: 403–404.

    Article  CAS  Google Scholar 

  11. Yegane-Sarkandy, S., A. M. Farnoud, S. A. Shojaosadati, R. Khalilzadeh, M. Sadeghyzadeh, B. Ranjbar, and V. Babaeipour (2009) Overproduction of human interleukin-2 in recombinant Escherichia coli BL21 high-cell-density culture by the determination and optimization of essential amino acids using a simple stoichiometric model. Biotechnol. Appl. Bioc. 54: 31–39.

    Article  CAS  Google Scholar 

  12. Khatri, N. K. and F. Hoffmann (2006) Oxygen-limited control of methanol uptake for improved production of a single-chain antibody fragment with recombinant Pichia pastoris. Appl. Microbiol. Biotechnol. 72: 492–498.

    Article  CAS  Google Scholar 

  13. Lin, J., D. Panigraphy, L. B. Trinh, J. Folkman, and J. Shiloach (2000) Production process for recombinant human angiostatin in Pichia pastori. J. Ind. Microbiol. Biotechnol. 24: 31–35.

    Article  CAS  Google Scholar 

  14. Minning, S., A. Serrano, P. Ferrer, C. Sola, R. D. Schmid, and F. Valero (2001) Optimization of the high-level production of Rhizopus oryzae lipase in Pichia pastoris. J. Biotechnol. 86: 59–70.

    Article  CAS  Google Scholar 

  15. Qureshi, M. S., D. Zhang, G. Du, and J. Chen (2010) Improved production of polygalacturonate lyase by combining a pH and online methanol control strategy in a two-stage induction phase with a shift in the transition phase. J. Ind. Microbiol. Biotechnol. 37: 323–333.

    Article  CAS  Google Scholar 

  16. Schenk, J., K. Balazs, C. Jungo, J. Urfer, C. Wegmann, A. Zocchi, I. W. Marison, and U. von Stockar (2008) Influence of specific growth rate on specific productivity and glycosylation of a recombinant avidin produced by a Pichia pastoris mut+ strain. Biotechnol. Bioeng. 99: 369–377.

    Article  Google Scholar 

  17. Surribas, A., R. Stahn, J.L. Montesinos, S. O. Enfors, F. Valero, and M. Jahic (2007) Production of a Rhizopus oryzae lipase from Pichia pastoris using alternative operational strategies. J. Biotechnol. 130: 291–299.

    Article  CAS  Google Scholar 

  18. Trinh, L. B., J. N. Phue, and J. Shiloach (2003) Effect of methanol feeding strategies on production and yield of recombinant mouse endostatin from Pichia pastoris. Biotechnol. Bioeng. 82: 438–444.

    Article  CAS  Google Scholar 

  19. Wang, Y., Z. Wang, G. Du, Z. Hua, L. Liu, J. Li, and J. Chen (2009) Enhancement of alkaline polygalacturonate lyase production in recombinant Pichia pastoris according to the ratio of methanol to cell concentration. Bioresour. Technol. 100: 1343–1349.

    Article  CAS  Google Scholar 

  20. Woo, S. H., S. H. Park, H. K. Lim, and K. H. Jung (2005) Extended operation of a pressurized 75-L bioreactor for shLkn-1 production by Pichia pastoris using dissolved oxygen profile control. J. Ind. Microbiol. Biotechnol. 32: 474–480.

    Article  CAS  Google Scholar 

  21. Zhang, W., M. A. Bevins, B. A. Plantz, and L. A. Smith (2000) Modeling Pichia pastoris growth on methanol and optimizing the production of a recombinant protein, the heavy-chain fragment C of botulinum neurotoxin, serotype A. Biotechnol. Bioeng. 70: 1–8.

    Article  CAS  Google Scholar 

  22. Yee, L. and H. W. Blanch (1992) Recombinant protein expression in high cell density fed-batch cultures of Escherichia coli. Nat. Biotechnol. 10: 1550–1556.

    Article  CAS  Google Scholar 

  23. Bahrami, A., S. A. Shojaosadati, R. Khalilzadeh, and E. Vasheghani Farahani (2008) Two-stage glycerol feeding for enhancement of recombinant hG-CSF production in a fed-batch culture of Pichia pastoris. Biotechnol. Lett. 30: 1081–1085.

    Article  CAS  Google Scholar 

  24. Miller, J. H. (1972) Experiments in Molecular Genetics. Cold Spring Harbor Laboratory Press, NY, USA.

    Google Scholar 

  25. Keesey, J. (1987) Biochemica Information. 1st ed., Boehringer Mannheim Biochemicals, Indianapolis, IN, USA.

    Google Scholar 

  26. Hopner, T. and J. Knappe (1974) Formate determination with formate dehydrogenase. pp. 1551–1555. In: H. U. Bergmeyer (eds.). Methods of Enzymatic Analysis. Academic Press Inc., NY, USA.

    Google Scholar 

  27. Wagner, L. W., N. H. Matheson, R. F. Heisey, and K. Schneider (1997) Use of a silicone tubing sensor to control methanol concentration during fed-batch fermentation of Pichia pastoris. Biotechnol. Techniques 11: 791–795.

    Article  CAS  Google Scholar 

  28. Mokhtari-Hosseini, Z. B., E. Vasheghani-Farahani, S. A. Shojaosadati, R. Karimzadeh, and A. Heidarzadeh-Vazifekhoran (2009) Effect of feed composition on PHB production from methanol by HCDC of Methylobacterium extorquens (DSMZ 1340). J. Chem. Technol. Biotechnol. 84: 1136–1139.

    Article  CAS  Google Scholar 

  29. Nash, T. (1953) The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochem. J. 55: 416–421.

    CAS  Google Scholar 

  30. Jahic, M., A. Veide, T. Charoenrat, T. Teeri, and S.O. Enfors (2006) Process technology for production and recovery of heterologous proteins with Pichia pastoris. Biotechnol. Prog. 22: 1465–1473.

    CAS  Google Scholar 

  31. Jahic, M., F. Wallberg, M. Bollok, P. Garcia, and S. O. Enfors (2003) Temperature limited fed-batch technique for control of proteolysis in Pichia pastoris bioreactor cultures. Microb. Cell Fact. 2: 6.

    Article  Google Scholar 

  32. Kuwae, S., M. Ohyama, T. Ohya, H. Ohi, and K. Kobayashi (2005) Production of recombinant human antithrombin by Pichia pastoris. J. Biosci. Bioeng. 99: 264–271.

    Article  CAS  Google Scholar 

  33. Plantz, B. A., K. Nickerson, S. D. Kachman, and V. L. Schlegel (2007) Evaluation of metals in a defined medium for Pichia pastoris expressing recombinant β-galactosidase. Biotechnol. Prog. 23: 687–692.

    Article  CAS  Google Scholar 

  34. Sinha, J., B. A. Plantz, M. Inan, and M. M. Meagher (2005) Causes of proteolytic degradation of secreted recombinant proteins produced in methylotrophic yeast Pichia pastoris: Case study with recombinant ovine interferon-τ. Biotechnol. Bioeng. 89: 102–112.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Abbas Shojaosadati.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maghsoudi, A., Hosseini, S., Shojaosadati, S.A. et al. A new methanol-feeding strategy for the improved production of β-galactosidase in high cell-density fed-batch cultures of Pichia pastoris Mut+ strains. Biotechnol Bioproc E 17, 76–83 (2012). https://doi.org/10.1007/s12257-011-0201-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-011-0201-9

Keywords

Navigation