Skip to main content
Log in

Multi-hour translation of mRNA in a cell-free system

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

In this study, we demonstrate that mRNA molecules can serve as an efficient template for cell-free translation through a combination of methods to protect them from nucleolytic digestion. Removal of major endonucleases activity from cell extract, the addition of a stemloop structure at the 3′-end of the mRNA and continuous reloading of ribosomes onto mRNA were found to be crucial for maintaining the functional integrity of mRNA during cell-free synthesis. When these three approaches were combined, mRNA-directed protein synthesis continued over 15 h, leading to the production of 2.6 mg/mL of encoded protein. The methods for direct translation of mRNA presented herein will provide a useful option for deciphering genetic information, including the fields of mRNA display and materialization of metagenomic information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim, D. M. and C. Y. Choi (1996) A semicontinuous prokaryotic coupled transcription/translation system using a dialysis membrane. Biotechnol. Prog. 12: 645–649.

    Article  CAS  Google Scholar 

  2. Yamamoto, Y. I., H. Nagahori, S. Yao, S. T. Zhang, and E. Suzuki (1996) Hollow fiber reactor for continuous flow cell-free protein production. J. Chem. Eng. Jpn. 29: 1047–1050.

    Article  CAS  Google Scholar 

  3. Chekulayeva, M. N., O. V. Kumasov, V. A. Shirokov, and A. S. Spirin (2001) Continuous-exchange cell-free protein synthesizing system: Synthesis of HIV-1 antigen Nef. Biochem. Biophys. Res. Commun. 280: 914–917.

    Article  CAS  Google Scholar 

  4. Sawasaki, T., Y. Haswgawa, M. Tsuchimochi, N. Kamura, T. Ogawawara, T. Kuroita, and Y. Endo (2002) A bilayer cell-free protein synthesis system for high-throuput screening of gene products. FEBS Lett. 514: 102–105.

    Article  CAS  Google Scholar 

  5. Kim, H. C., T. W. Kim, C. G. Park, I. S. Oh, K. Park, and D. M. Kim (2008) Continuous cell-free protein synthesis using glycolytic intermediates as energy sources. J. Microbiol. Biotechnol. 18: 885–888.

    CAS  Google Scholar 

  6. Yamaguchi, J., M. Naimuddin, M. Biyani, T. Sasaki, M. Machida, T. Kubo, T. Funatsu, Y. Husimi, and N. Nemoto (2009) cDNA display: A novel screening method for functional disulfide-rich peptides by solid-phase synthesis and stabilization of mRNAprotein fusions. Nucleic Acids Res. 37: 108.

    Article  Google Scholar 

  7. Bowden-Bonnett, L. and J. M. Lord (1979) Isolation and cell-free translation of total messenger RNA from germinating castor bean endosperm. Plant Physiol. 63: 769–773.

    Article  CAS  Google Scholar 

  8. Donovan, W. P. and S. R. Kushner (1986) Polynucleotide phosphorylase and ribonuclease II are required for cell viability and mRNA turnover in Escherichia coli K-12. Proc. Natl. Acad. Sci. USA 83: 120–124.

    Article  CAS  Google Scholar 

  9. Belasco, J. G. and C. F. Higgins (1988) Mechanisms of mRNA decay in bacteria: A perspective. Gene 72: 15–23.

    Article  CAS  Google Scholar 

  10. Kuwano, M., M. Ono, H. Endo, K. Hori, K. Nakamura, Y. Hirota, and Y. Ohnishi (1977) Gene affecting longevity of messenger RNA: A mutant of Escherichia coli with altered mRNA stability. Mol. Gen. Genet. 154: 279–285.

    Article  CAS  Google Scholar 

  11. Misra, T. K. and D. Apirion (1979) RNase E, an RNA processing enzyme from Escherichia coli. J. Biol. Chem. 254: 11154–11159.

    CAS  Google Scholar 

  12. Taraseviciene, L., A. Miczak, and D. Apirion (1991) The gene specifying RNase E (rne) and a gene affecting mRNA stability (ams) are the same gene. Mol. Microbiol. 5: 851–855.

    Article  CAS  Google Scholar 

  13. Lopez, P. J., I. Marchand, S. A. Joyce, and M. Dreyfus (1999) The C-terminal half of RNase E, which organizes the Escherichia coli degradasome, participates in mRNA degradation but not rRNA processing in vivo. Mol. Microbiol. 33: 188–199.

    Article  CAS  Google Scholar 

  14. Hirao, I., S. Yoshizawa, and K. Miura (1993) Stabilization of mRNA in an Escherichia coli cell-free translation system. FEBS Lett. 321: 169–172.

    Article  CAS  Google Scholar 

  15. Kim, T. W., J. W. Keum, I. S. Oh, C. Y. Choi, C. G. Park, and D. M. Kim (2006) Simple procedures for the construction of a robust and cost-effective cell-free protein synthesis system. J. Biotechnol. 126: 554–561.

    Article  CAS  Google Scholar 

  16. Shaw, W. V. (1975) Chloramphenicol acetyltransferase from chloramphenicol-resistant bacteria. Methods Enzymol. 43: 737–755.

    Article  CAS  Google Scholar 

  17. Ahn, J. H., H. S. Chu, T. W. Kim, I. S. Oh, C. Y. Choi, G. H. Hahn, C. G. Park, and D. M. Kim (2005) Cell-free synthesis of recombinant proteins from PCR-amplified genes at a comparable productivity to that of plasmid-based reactions. Biochem. Biophys. Res. Commun. 338: 1346–1352.

    Article  CAS  Google Scholar 

  18. Kim, T. W., D. M. Kim, and C. Y. Choi (2006) Rapid production of milligram quantities of proteins in a batch cell-free protein synthesis system. J. Biotechnol. 124: 373–380.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Myung Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, HC., Kwon, YC., Lee, KH. et al. Multi-hour translation of mRNA in a cell-free system. Biotechnol Bioproc E 16, 1152–1156 (2011). https://doi.org/10.1007/s12257-010-0417-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-010-0417-0

Keywords

Navigation