Skip to main content
Log in

Toxic effects of titanium dioxide nanoparticles on microbial activity and metabolic flux

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The purpose of this research is to estimate and quantify the toxicity of titanium dioxide (TiO2) nanoparticles in microorganisms. Nano-sized particles of TiO2 were more toxic compared to micro-sized particles. Three microorganismal species, Escherichia coli, Bacillus subtilis, and Saccharomyces cerevisiae, were used to test TiO2 antimicrobial effects. E. coli showed the lowest survival rate (36%), while S. cerevisiae showed the highest survival rate (71%). The antimicrobial effect of TiO2 was also dependent on ultraviolet ray wavelength. The survival ratio of E. coli was 40% at a 254 nm wavelength and 80% at 365 nm. To observe the effect of TiO2 on the intracellular metabolism, a metabolic flux analysis and the measurement of in vivo glucose-6-phosphate were performed. G6P concentration in cells exposed to TiO2 increased, and glycolysis flux was also higher than the controls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gurr, J., A. Wang, C. Chen, and K. Jan (2005) Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicol. 213: 66–73.

    Article  CAS  Google Scholar 

  2. Chawengkijwanich, C. and Y. Hayata (2008) Development of TiO2 powder-coated food packaging film and its ability to inactivate Escherichia coli in vitro and in actual tests. Int. J. Food Microbiol. 123: 288–292.

    Article  CAS  Google Scholar 

  3. Fu, G., P. S. Vary, and C. Lin (2005) Anatase TiO2 nanocomposites for antimicrobial coatings. The J. Phys. Chem. B. 109: 8889–8898.

    Article  CAS  Google Scholar 

  4. Yu, J. C., W. Ho, J. Lin, H. Yip, and P. K. Wong (2003) Photocatalytic activity, antibacterial effect, and photoinduced hydrophilicity of TiO2 films coated on a stainless steel substrate. Environ. Sci. Technol. 37: 2296–2301.

    Article  CAS  Google Scholar 

  5. Tsuang, Y. H., J. S. Sun, Y. C. Huang, C. H. Lu, W. H. S. Chang, and C. C. Wang (2007) Studies of photokilling of bacteria using titanium dioxide nanoparticles. Artificial Organs. 32: 167–174.

    Article  Google Scholar 

  6. Lin, H., Z. Xu, X. Wang, J. Long, W. Su, X. Fu, and Q. Lin (2008) Photocatalytic and antibacterial properties of medicalgrade PVC material coated with TiO2 film. J. Biomed. Mat. Res. Part B: Appl. Biomat. 87: 425–431.

    Article  Google Scholar 

  7. Oka, Y., W. C. Kim, T. Yoshida, T. Hirashima, H. Mouri, H. Urade, Y. Itoh, and T. Kubo (2008) Efficacy of titanium dioxide photocatalyst for inhibition of bacterial colonization on percutaneous implants. J. Biomed. Mat. Res. 86: 530–540.

    Google Scholar 

  8. Chun, M., E. Shim, E. Kho, K. Park, J. Jung, J. Kim, B. Kim, K. Lee, D. Cho, D. Bai, S. Lee, H. Hwang, and S. Ohk (2007) Surface modification of orthodontic wires with photocatalytic titanium oxide for its antiadherent and antibacterial properties. The Angle Orthodontist. 77: 483–488.

    Article  Google Scholar 

  9. Choi, J. Y., K. H. Kim, K. C. Choy, K. T. Oh, and K. N. Kim (2006) Photocatalytic antibacterial effect of TiO2 film formed on Ti and TiAg exposed to Lactobacillus acidophilus. J. Biomed. Mat. Res. 80: 353–359.

    Google Scholar 

  10. Yao, Y., Y. Ohko, Y. Sekiguchi, A. Fujishima, and Y. Kubota (2007) Self-sterilization using silicone catheters coated with Ag and TiO2 nanocomposite thin film. J. Biomed. Mat. Res. Part B: Appl. Biomat. 85: 453–460.

    Google Scholar 

  11. Gelover, S., L. A. Go’mez, K. Reyes, and M. T. Leal (2006) A practical demonstration of water disinfection using TiO2 films and sunlight. Water Res. 40: 3274–3280.

    Article  CAS  Google Scholar 

  12. Zhao, J. and X. Yang (2003) Photocatalytic oxidation for indoor air purification: A literature review. Building and Environ. 38: 645–654.

    Article  Google Scholar 

  13. Maness, P., S. Smolinski, D. M. Blake, Z. Huang, E. J. Wolfrum, and W. A. Jacoby (1999) Bactericidal activity of photocatalytic TiO2 reaction: Toward an understanding of its killing mechanism. Appl. Environ. Microbiol. 65: 4094–4098.

    CAS  Google Scholar 

  14. Rincón, A. and C. Pulgarin (2004) Bactericidal action of illuminated TiO2 on pure Escherichia coli and natural bacterial consortia: Post-irradiation events in the dark and assessment of the effective disinfection time. App. Catal. B: Environ. 49: 99–112.

    Article  Google Scholar 

  15. Saito, T., T. Iwase, J. Horie, and T. Morioka (1992) Mode of photolytic bactericidal action of powdered semiconductor TiO2 on mutans streptococci. J. Photochem. Photobiol. B: Biol. 14: 369–379.

    Article  CAS  Google Scholar 

  16. Winder, C., W. Dunn, S. Schuler, D. Broadhurst, R. Jarvis, G. Stephens, and R. Goodacre (2008) Global metabolic profiling of Escherichia coli cultures: An evaluation of methods for quenching and extraction of intracellular metabolites. Anal. Chem. 80: 2939–2948.

    Article  CAS  Google Scholar 

  17. Chassagnole, C., N. Noisommit-Rizzi, J. Schmid, K. Mauch, and M. Reuss, (2002) Dynamic modeling of the central carbon metabolism of Escherichia coli. Biotechnol. Bioeng. 79: 53–73.

    Article  CAS  Google Scholar 

  18. Schaub, J., K. Mauch, and M. Reuss (2007) Metabolic flux analysis in Escherichia coli by integrating isotopic dynamic and isotopic stationary 13C labeling data. Biotechnol. Bioeng. 99: 1170–1185.

    Article  Google Scholar 

  19. Stephanopoulos, G., A. Aristidou, and J. Nielsen (1998) Metabolic Engineering. Academic press, San Diego, USA.

    Google Scholar 

  20. Adams, L., D. Lyon, and P. Alvarez (2006) Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res. 40: 3527–3532.

    Article  CAS  Google Scholar 

  21. Kumar, C. S. S. R. (2006) Nanomaterials — Toxicity, Health and Environmental Issues. WILEY-VCH, Weinheim, Germany.

    Google Scholar 

  22. Salih, F. M. (2002) Enhancement of solar inactivation of Escherichia coli by titanium dioxide photocatalytic oxidation. J. Appl. Microbiol. 92: 920–926.

    Article  CAS  Google Scholar 

  23. Sinha, R., R. Karan, A. Sinha, and S. K. Khare (2011) Interaction and nanotoxic effect of ZnO and Ag nanoparticles on mesophilic and halophilic bacterial cells. Bioresour. Technol. 102: 1516–1520.

    Article  CAS  Google Scholar 

  24. Lansing, M. P., J. P. Harley, and D. A. Klein (1999) Microbiology. 4th ed., pp. 51–87. The McGraw-Hill companies, NY, USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinwon Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, S., Lee, S., Kim, B. et al. Toxic effects of titanium dioxide nanoparticles on microbial activity and metabolic flux. Biotechnol Bioproc E 17, 276–282 (2012). https://doi.org/10.1007/s12257-010-0251-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-010-0251-4

Keywords

Navigation