Skip to main content
Log in

Comparison of the adhesion and proliferation characteristics of HUVEC and two endothelial cell lines (CRL 2922 and CRL 2873) on various substrata

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Endothelial cell coverage of blood-contacting devices is crucial to their eventual success in the clinic. Two established human cell lines derived from HUVEC (human umbilical vascular endothelial cells), CRL 2922 and CRL 2873, have been widely utilized to study and model endothelial cell biology. However, it is not clear if these two cell lines would be useful for modeling primary endothelial cell interaction with newly-formulated biomaterials in tissue engineering applications. Hence, this study was conducted to compare the adhesion and proliferation characteristics of HUVEC grown on seven different substrata, tissue culture polystyrene (TCPS), gelatin, chitosan, poly-L-lysine, hyaluronan, poly-L-lactic acid (PLLA), and polylactic-co-glycolic acid (PLGA). The short-term adhesive behavior (2 h) of HUVEC on the various substrata was not closely-replicated by either CRL 2873 or CRL 2922. This was likely because the 2 h timeframe is too short for identification of differences in the interaction among the three cell types grown on various substrata. There was much faster proliferation of CRL 2922 on all seven substrata when compared to HUVEC and CRL 2873. Moreover, the proliferation rates of CRL 2922 on the various substrata showed little variation. In contrast, HUVEC and CRL 2873 displayed similar trends in proliferation rates, with gelatin and TCPS yielding the highest rates, and PLLA and PLGA yielding the lowest rates. Hence, CRL 2873 is better suited for modeling primary endothelial cell interaction with newly-formulated biomaterials than CRL 2922. The advantage of using CRL 2873 over HUVEC for biomaterial screening is that it is immortalized and displays much less inter-batch variability than primary culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Merx, M. W., A. Zernecke, E. A. Liehn, A. Schuh, E. Skobel, B. Butzbach, P. Hanrath, and C. Weber (2005) Transplantation of human umbilical vein endothelial cells improves left ventricular function in a rat model of myocardial infarction. Basic Res. Cardiol. 100: 208–216.

    Article  Google Scholar 

  2. Inamori, M., H. Mizumoto, and T. Kajiwara (2009) An approach for formation of vascularized liver tissue by endothelial Cell-covered hepatocyte spheroid integration. Tissue Eng. Part A. 15: 2029–2037.

    Article  CAS  Google Scholar 

  3. Consigny, P. M. (2000) Endothelial cell seeding on prosthetic surfaces. J. Long Term Eff. Med. Implants. 10: 79–95.

    CAS  Google Scholar 

  4. Venkatraman, S., F. Boey, and L. L. Lao (2008) Implanted cardiovascular polymers: Natural, synthetic and bio-inspired. Prog. Poly. Sci. 33: 853–874.

    Article  CAS  Google Scholar 

  5. Gao, C., X. Hu, Y. Hong, J. Guan, and J. Shen (2003) Photografting of poly(hydroxylethyl acrylate) onto porous polyurethane scaffolds to improve their endothelial cell compatibility. J. Biomater Sci. Polym. Ed. 14: 937–950.

    Article  CAS  Google Scholar 

  6. Risbud, M. V., E. Karamuk, R. Moser, and J. Mayer (2002) Hydrogel-coated textile scaffolds as three-dimensional growth support for human umbilical vein endothelial cells (HUVECs): Possibilities as coculture system in liver tissue engineering. Cell Transplant. 11: 369–377.

    Google Scholar 

  7. Chu, C. F., A. Lu, M. Liszkowski, and R. Sipehia (1999) Enhanced growth of animal and human endothelial cells on biodegradable polymers. Biochim. Biophys. Acta. 1472: 479–485.

    CAS  Google Scholar 

  8. Campillo-Fernández, A. J., R. E. Unger, K. Peters, S. Halstenberg, M. Santos, M. Salmerón Sánchez, J. M. Meseguer Dueñas, M. Monleón Pradas, J. L. Gómez Ribelles, and C. J. Kirkpatrick (2009) Analysis of the biological response of endothelial and fibroblast cells cultured on synthetic scaffolds with various hydrophilic/hydrophobic ratios: Influence of fibronectin adsorption and conformation. Tissue Eng. Part A. 15: 1331–1341.

    Article  Google Scholar 

  9. Gifford, S. M., M. A. Grummer, S. A. Pierre, J. L. Austin, J. Zheng, and I. M. Bird (2004) Functional characterization of HUVEC-CS: Ca2+ signaling, ERK 1/2 activation, mitogenesis and vasodilator production. J. Endocrinol. 182: 485–499.

    Article  CAS  Google Scholar 

  10. Ahn, K., S. Pan, K. Beningo, and D. Hupe (1995) A permanent human cell line (EA.hy926) preserves the characteristics of endothelin converting enzyme from primary human umbilical vein endothelial cells. Life Sci. 56: 2331–2341.

    Article  CAS  Google Scholar 

  11. Ishiyama, M., Y. Miyazono, K. Sasamoto, Y. Ohkura, and K. Ueno (1997) A highly water-soluble disulfonated tetrazolium salt as a chromogenic indicator for NADH as well as cell viability. Talanta 44: 1299–1305.

    Article  CAS  Google Scholar 

  12. American Type Culture Collection Catalog. http://www.atcc.org/ATCCAdvancedCatalogSearch/ProductDetails/tabid/452/Default.aspx?ATCCNum=CRL-1730&Template=cellBiology.

  13. Takahashi, K., Y. Sawasaki, J. Hata, K. Mukai, and T. Goto (1990) Spontaneous transformation and immortalization of human endothelial cells. In Vitro Cell Dev. Biol. 26: 265–274.

    Article  CAS  Google Scholar 

  14. Fontijn, R., C. Hop, H. J. Brinkman, R. Slater, A. Westerveld, J. A. van Mourik, and H. Pannekoek (1995) Maintenance of vascular endothelial cell-specific properties after immortalization with an amphotrophic replication-deficient retrovirus containing human papilloma virus 16 E6/E7 DNA. Exp. Cell Res. 216: 199–207.

    Article  CAS  Google Scholar 

  15. Kiessling, F., J. Kartenbeck, and C. Haller (1999) Cell-cell contacts in the human cell line ECV304 exhibit both endothelial and epithelial characteristics. Cell Tissue Res. 297: 131–140.

    Article  CAS  Google Scholar 

  16. Brown, J., S. J. Reading, S. Jones, C. J. Fitchett, J. Howl, A. Martin, C. L. Longland, F. Michelangeli, Y. E. Dubrova, and C. A. Brown (2000) Critical evaluation of ECV304 as a human endothelial cell model defined by genetic analysis and functional responses: A comparison with the human bladder cancer derived epithelial cell line T24/83. Lab Invest. 80: 37–45.

    Article  CAS  Google Scholar 

  17. Suda, K., B. Rothen-Rutishauser, M. Günthert, and H. Wunderli-Allenspach (2001) Phenotypic characterization of human umbilical vein endothelial (ECV304) and urinary carcinoma (T24) cells: Endothelial versus epithelial features. In Vitro Cell Dev. Biol. Anim. 37: 505–514.

    Article  CAS  Google Scholar 

  18. Lidington, E. A., D. L. Moyes, A. M. McCormack, and M. L. Rose (1999) A comparison of primary endothelial cells and endothelial cell lines for studies of immune interactions. Transpl. Immunol. 7: 239–246.

    Article  CAS  Google Scholar 

  19. MacLeod, R. A., W. G. Dirks, Y. Matsuo, M. Kaufmann, H. Milch, and H. G. Drexler (1999) Widespread intraspecies cross-contamination of human tumor cell lines arising at source. Int. J. Cancer 83: 555–563.

    Article  CAS  Google Scholar 

  20. Tanabe, H., Y. Takada, D. Minegishi, M. Durematsu, T. Mansui, and H. Mizusawa (1999) Cell line individualization by STR multiplex system in the cell bank found cross-contamination between ECV304 and EJ-1/T24. Tiss. Cul. Res. Commu. 18: 329–338.

    Google Scholar 

  21. Unger, R. E., V. Krump-Konvalinkova, K. Peters, and C. J. Kirkpatrick (2002) In vitro expression of the endothelial phenotype: Comparative study of primary isolated cells and cell lines, including the novel cell line HPMEC-ST1.6R. Microvasc. Res. 64: 384–397.

    Article  CAS  Google Scholar 

  22. Imbert, E., A. A. Poot, C. G. Figdor, and J. Feijen (1998) Different growth behaviour of human umbilical vein endothelial cells and an endothelial cell line seeded on various polymer surfaces. Biomat. 19: 2285–2290.

    Article  CAS  Google Scholar 

  23. Puklin-Faucher, E. and M. P. Sheetz (2009) The mechanical integrin cycle. J. Cell Sci. 122: 179–186.

    Article  CAS  Google Scholar 

  24. Arnaout, M. A., S. L. Goodman, and J. P. Xiong (2007) Structure and mechanics of integrin-based cell adhesion. Curr. Opin. Cell Biol. 19: 495–507.

    Article  CAS  Google Scholar 

  25. Zutter, M. M. (2007) Integrin-mediated adhesion: Tipping the balance between chemosensitivity and chemoresistance. Adv. Exp. Med. Biol. 608: 87–100.

    Article  CAS  Google Scholar 

  26. Morgan, M. R., M. J. Humphries, and M. D. Bass (2007) Synergistic control of cell adhesion by integrins and syndecans. Nat. Rev. Mol. Cell. Biol. 8: 957–969.

    Article  CAS  Google Scholar 

  27. Campbell, I. D. (2008) Studies of focal adhesion assembly. Biochem. Soc. Trans. 36: 263–266.

    Article  CAS  Google Scholar 

  28. Jockusch, B. M., P. Bubeck, K. Giehl, M. Kroemker, J. Moschner, M. Rothkegel, M. Rüdiger, K. Schlüter, G. Stanke, and J. Winkler (1995) The molecular architecture of focal adhesions. Annu. Rev. Cell Dev. Biol. 11: 379–416.

    Article  CAS  Google Scholar 

  29. Eliceiri, B. P. and D. A. Cheresh (2000) Role of alpha v integrins during angiogenesis. Cancer J. 6: 245–249.

    Google Scholar 

  30. Byzova, T. V., R. Rabbani, S. E. D’souza, and E. F. Plow (1998) Role of integrin alpha(v)beta3 in vascular biology. Thromb. Haemost. 80: 726–734.

    CAS  Google Scholar 

  31. Shattil, S. J. (1995) Function and regulation of the beta 3 integrins in hemostasis and vascular biology. Thromb. Haemost. 74: 149–155.

    CAS  Google Scholar 

  32. Denis, C. V. (2002) Molecular and cellular biology of von Willebrand factor. Int. J. Hematol. 75: 3–8.

    Article  CAS  Google Scholar 

  33. Woodfin, A., M. B. Voisin, and S. Nourshargh (2007) PECAM-1: A multi-functional molecule in inflammation and vascular biology. Arterioscler Thromb. Vasc. Biol. 27: 2514–2523.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boon Chin Heng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heng, B.C., Xia, Y., Shang, X. et al. Comparison of the adhesion and proliferation characteristics of HUVEC and two endothelial cell lines (CRL 2922 and CRL 2873) on various substrata. Biotechnol Bioproc E 16, 127–135 (2011). https://doi.org/10.1007/s12257-010-0141-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-010-0141-9

Keywords

Navigation