Skip to main content
Log in

Clonal isolation and characterization of mesenchymal stem cells from human amnion

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Mesenchymal stem cells (MSCs) derived from human amnion have both self-renewal capability and multipotency and are an attractive cell source for cell-based therapy. However, these cells have been shown to be heterogeneous, and as of yet no single-cell-derived MSCs clone has been established from human amnion. This study was carried out to isolate MSCs clones by limiting dilution method and compare their characteristics in vitro. Three clones (namely, 8B, 11D, and 11F) were established from a heterogeneous population of human amnion-derived cells (h-hAMCs). The clones and h-hAMCs successfully proliferated while demonstrating different cumulative population doublings (CPD) during an 80-day culture. In addition, the colony-forming efficiency (CFE) of h-hAMCs was significantly lower than those of 8B and 11F and higher than that of 11D. Clones 8B and 11F were tripotent, whereas 11D did not undergo chondrogenic differentiation. All cells expressed surface markers including CD29, CD44, and CD105 and notably, the clones expressed higher levels of CD105 than h-hAMCs (95.96, 97.05, 98.14% and 72.81% for 8B, 11D, 11F and h-hAMCs, respectively). In addition, the expression of stem cell gene Nanog-3 was associated with the differential differentiation potential of 11D from 8B, 11F, and h-hAMCs. These results suggested that significant differences existed between individual hAMCs. Further studies for developing novel methods to select sub-populations of hAMSCs are warranted for their clinical applications, in which CD105 and stem cell gene Nanog-3 are possible candidate markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ohgushi, H. and A. I. Caplan (1999) Stem cell technology and bioceramics: From cell to gene engineering. J. Biomed. Mater. Res. 109: 913–927.

    Article  Google Scholar 

  2. Zummo, G., F. Bucchieri, F. Cappello, M. Bellafiore, G. La Rocca, S. David, V. Di Felice, R. Anzalone, G. Peri, A. Palma, and F. Farina (2007) Adult stem cells: The real root into the embryo? Eur. J. Histochem. 51Suppl 1: 101–103.

    Google Scholar 

  3. Fukuchi, Y., H. Nakajima, D. Sugiyama, I. Hirose, T. Kitamura, and K. Tsuji (2004) Human placenta-derived cells have mesenchymal stem/progenitor cell potential. Stem Cells 22: 649–658.

    Article  CAS  Google Scholar 

  4. D’Ippolito, G., G. A. Howard, B. A. Roos, and P. C. Schiller (2006) Sustained stromal stem cell self-renewal and osteoblastic differentiation during aging. Rejuv. Res. 9: 10–19.

    Article  Google Scholar 

  5. Mareschi, K., I. Ferrero, D. Rustichelli, S. Aschero, L. Gammaitoni, M. Aglietta, and F. Fagioli (2006) Expansion of mesenchymal stem cells isolated from pediatric and adult donor bone marrow. J. Cell Biochem. 97: 744–754.

    Article  CAS  Google Scholar 

  6. Chien, C. C., B. L. Yen, F. K. Lee, T. H. Lai, Y. C. Chen, S. H. Chan, and H. I. Huang (2006) In vitro differentiation of human placenta-derived multipotent cells into hepatocyte-like cells. Stem Cells 24: 1759–1768.

    Article  Google Scholar 

  7. Poloni, A., V. Rosini, E. Mondini, G. Maurizi, S. Mancini, G. Discepoli, S. Biasio, G. Battaglini, E. Berardinelli, F. Serrani, and P. Leoni (2008) Characterization and expansion of mesenchymal progenitor cells from first-trimester chorionic villi of human placenta. Cytotherapy 10: 690–697.

    Article  CAS  Google Scholar 

  8. Miki, T. and S. C. Strom (2006) Amnion-derived pluripotent/multipotent stem cells. Stem Cell Rev. 2: 133–142.

    Article  CAS  Google Scholar 

  9. Matikainen, T. and J. Laine (2005) Placenta—an alternative source of stem cells. Toxicol. Appl. Pharmacol. 207: 544–549.

    Article  Google Scholar 

  10. Neuhuber, B., S. A. Swanger, L. Howard, A. Mackay, and I. Fischer (2008) Effects of plating density and culture time on bone marrow stromal cell characteristics. Exp. Hematol. 36: 1176–1185.

    Article  Google Scholar 

  11. Mariotti, E., P. Mirabelli, G. Abate, M. Schiattarella, P. Martinelli, G. Fortunato, R. Di Noto, and L. Del Vecchio (2008) Comparative characteristics of mesenchymal stem cells from human bone marrow and placenta: CD10, CD49d, and CD56 make a difference. Stem Cells Dev. 17: 1039–1041.

    Article  CAS  Google Scholar 

  12. Perin, E. C., Y. J. Geng, and J. T. Willerson (2003) Adult stem cell therapy in perspective. Circulation 107: 935–938.

    Article  Google Scholar 

  13. Chen, L. B., X. B. Jiang, and L. Yang (2004) Differentiation of rat marrow mesenchymal stem cells into pancreatic islet betacells. World J. Gastroenterol. 10: 3016–3020.

    CAS  Google Scholar 

  14. Wollert, K. C., G. P. Meyer, J. Lotz, S. Ringes-Lichtenberg, P. Lippolt, C. Breidenbach, S. Fichtner, T. Korte, B. Hornig, D. Messinger, L. Arseniev, B. Hertensein, P. Ganser, and P. Drexler (2004) Intracoronary autologous bone-marrow cell transfer after myocardial infarction: The BOOST randomised controlled clinical trial. The Lancet 364: 141–148.

    Article  Google Scholar 

  15. Muraglia, A., R. Cancedda, and R. Quarto (2000) Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model. J. Cell Sci. 113: 1161–1166

    CAS  Google Scholar 

  16. Kaviani, A., T. E. Perry, C. M. Barnes, J. T. Oh, M. M. Ziegler, S. J. Fishman, and D. O. Fauza (2002) The placenta as a cell source in fetal tissue engineering. J. Pediatr. Surg. 37: 995–999.

    Article  Google Scholar 

  17. Zhang, S., J. Ge, A. Sun, D. Xu, J. Qian, J. Lin, Y. Zhao, H. Hu, Y. Li, K. Wang, and Y. Zou (2006) Comparison of various kinds of bone marrow stem cells for the repair of infarcted myocardium: Single clonally purified non-hematopoietic mesenchymal stem cells serve as a superior source. J. Cell Biochem. 99: 1132–1147.

    Article  CAS  Google Scholar 

  18. Zhang, X., Y. Soda, K. Takahashi, Y. Bai, A. Mitsuru, K. Igura, H. Satoh, S. Yamaguchi, K. Tani, A. Tojo, and T. A. Takahashi (2006) Successful immortalization of mesenchymal progenitor cells derived from human placenta and the differentiation abilities of immortalized cells. Biochem. Biophys. Res. Commun. 351: 853–859.

    Article  CAS  Google Scholar 

  19. Miki, T., T. Lehmann, H. Cai, D. B. Stolz, and S. C. Strom (2005) Stem cell characteristics of amniotic epithelial cells. Stem Cells 23: 1549–1559.

    Article  CAS  Google Scholar 

  20. Zohar, R., J. Sodek, and C. A. McCulloch (1997) Characterization of stromal progenitor cells enriched by flow cytometry. Blood 90: 3471–3481.

    CAS  Google Scholar 

  21. Hung, S. C., N. J. Chen, S. L. Hsieh, H. Li, H. L. Ma, and W. H. Lo (2002) Isolation and characterization of size-sieved stem cells from human bone marrow. Stem Cells 20: 249–258.

    Article  Google Scholar 

  22. Cheng, L., P. Qasba, P. Vanguri, and M. A. Thiede (2000) Human mesenchymal stem cells support megakaryocyte and pro-platelet formation from CD34(+) hematopoietic progenitor cells. J. Cell Physiol. 184: 58–69.

    Article  CAS  Google Scholar 

  23. Sekiya, I., B. L. Larson, J. R. Smith, R. Pochampally, J. G. Cui, and D. J. Prockop (2002) Expansion of human adult stem cells from bone marrow stroma: Conditions that maximize the yields of early progenitors and evaluate their quality. Stem Cells 20: 530–541.

    Article  Google Scholar 

  24. Portmann-Lanz, C. B., A. Schoeberlein, A. Huber, R. Sager, A. Malek, W. Holzgreve, and D. V. Surbek (2006) Placental mesenchymal stem cells as potential autologous graft for pre- and perinatal neuroregeneration. Am. J. Obstet. Gynecol. 194: 664–673.

    Article  CAS  Google Scholar 

  25. Wulf, G. G., V. Viereck, B. Hemmerlein, D. Haase, K. Vehmeyer, T. Pukrop, B. Glass, G. Emons, and L. Trümper (2004) Mesengenic progenitor cells derived from human placenta. Tissue Eng. 10: 1136–1147.

    CAS  Google Scholar 

  26. Colter, D.C., R. Class, C. M. DiGirolamo, and D. J. Prockop (2000) Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow. Proc. Natl. Acad. Sci. U S A. 97: 3213–3218.

    Article  CAS  Google Scholar 

  27. Mareddy, S., R. Crawford, G. Brooke, and Y. Xiao (2007) Clonal isolation and characterization of bone marrow stromal cells from patients with osteoarthritis. Tissue Eng. 13: 819–829.

    Article  CAS  Google Scholar 

  28. Barry, F. P., R. E. Boynton, S. Haynesworth, J. M. Murphy, and J. Zaia (1999) The monoclonal antibody SH-2, raised against human mesenchymal stem cells, recognizes an epitope on endoglin (CD105). Biochem. Biophys. Res. Commun. 265: 134–139.

    Article  CAS  Google Scholar 

  29. Aslan, H., Y. Zilberman, L. Kandel, M. Liebergall, R. J. Oskouian, D. Gazit, and Z. Gazit (2006) Osteogenic differentiation of noncultured immunoisolated bone marrow-derived CD105+ cells. Stem Cells 24: 1728–1737.

    Article  Google Scholar 

  30. Arufe, M. C., A. De la Fuente, I. Fuentes-Boquete, F. J. De Toro, and F. J. Blanco (2009) Differentiation of synovial CD-105(+) human mesenchymal stem cells into chondrocyte-like cells through spheroid formation. J. Cell Biochem. 108: 145–155.

    Article  CAS  Google Scholar 

  31. Jin H. J., S. K. Park, W. Oh, Y. S. Yang, S. W. Kim, and S. J. Choi (2009) Down-regulation of CD105 is associated with multi-lineage differentiation in human umbilical cord blood-derived mesenchymal stem cells. Biochem. Biophys. Res. Commun. 381: 676–681.

    Article  CAS  Google Scholar 

  32. Martínez-Lorenzo, M. J., M. Royo-Cañas, E. Alegre-Aguarón, P. Desportes, T. Castiella, F. García-Alvarez, and L. Larrad (2009) Phenotype and chondrogenic differentiation of mesenchymal cells from adipose tissue of different species. J. Orthop. Res. 27: 1449–150

    Article  Google Scholar 

  33. Kalmar, T., C. Lim, P. Hayward, S. Muñoz-Descalzo, J. Nichols, J. Garcia-Ojalvo, and A. Martinez Arias (2009) Regulated fluctuations in nanog expression mediate cell fate decisions in embryonic stem cells. PLoS. Biol. 7: (doi:10.1371/journal.pbio. 1000149).

    Google Scholar 

  34. Chang, C. M., C. L. Kao, Y. L. Chang, M. J. Yang, Y. C. Chen, B. L. Sung, T. H. Tsai, K. C. Chao, S. H. Chiou, and H. H. Ku (2007) Placenta-derived multipotent stem cells induced to differentiate into insulin-positive cells. Biochem. Biophys. Res. Commun. 357: 414–420.

    Article  CAS  Google Scholar 

  35. Greco, S. J., K. Liu, and P. Rameshwar (2007) Functional similarities among genes regulated by OCT4 in human mesenchymal and embryonic stem cells. Stem Cells 25: 3143–3154.

    Article  CAS  Google Scholar 

  36. Chambers, I., D. Colby, M. Robertson, J. Nichols, S. Lee, S. Tweedie, and A. Smith (2003) Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113: 643–655.

    Article  CAS  Google Scholar 

  37. Yasuda, S. Y., N. Tsuneyoshi, T. Sumi, K. Hasegawa, T. Tada, N. Nakatsuji, and H. Suemori (2006) NANOG maintains selfrenewal of primate ES cells in the absence of a feeder layer. Genes Cells 11: 1115–1123.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, M., Zhou, Y. & Tan, WS. Clonal isolation and characterization of mesenchymal stem cells from human amnion. Biotechnol Bioproc E 15, 1047–1058 (2010). https://doi.org/10.1007/s12257-009-3147-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-009-3147-4

Keywords

Navigation