Skip to main content
Log in

Biological characterization and pluripotent identification of ovine amniotic fluid stem cells

  • Original Article
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Mesenchymal stem cells derived from amniotic fluid have become one of the most potential stem cell source for cell-based therapy for the reason they can be harvested at low cost and without ethical problems. Here, we obtained amniotic fluid stem cells (AFSCs) from ovine amniotic fluid and studied the expansion capacity, cell markers expression, karyotype, and multilineage differentiation ability. In our work, AFSCs were subcultured to passage 62. The cell markers, CD29, CD44, CD73 and OCT4 which analyzed by RT-PCR were positive; CD44, CD73, CD90, CD105, NANOG, OCT4 analyzed by immunofluorescence and flow cytometry were also positive. The growth curves of different passages were all typically sigmoidal. The different passages cells took on a normal karyotype. In addition, AFSCs were successfully induced to differentiate into adipocytes, osteoblasts and chondrocytes. The results suggested that the AFSCs isolated from ovine maintained normal biological characteristics and their multilineage differentiation potential provides many potential applications in cell-based therapies and tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alsalameh S et al (2004) Identification of mesenchymal progenitor cells in normal and osteoarthritic human articular cartilage. Arthritis Rheum 50:1522–1532

    Article  PubMed  Google Scholar 

  • Antonucci I et al (2011) Amniotic fluid as a rich source of mesenchymal stromal cells for transplantation therapy. Cell Transplant 20:789–795

    Article  PubMed  Google Scholar 

  • Antonucci I et al (2012) Amniotic fluid stem cells: a promising therapeutic resource for cell-based regenerative therapy. Curr Pharm Des 18:1846–1863

    Article  CAS  PubMed  Google Scholar 

  • Bobis S, Jarocha D, Majka M (2006) Mesenchymal stem cells: characteristics and clinical applications. Folia Histochem Cytobiol 44:215–230

    CAS  PubMed  Google Scholar 

  • Bollini S et al (2011) Amniotic fluid stem cells are cardioprotective following acute myocardial infarction. Stem Cells Dev 20:1985–1994

    Article  CAS  PubMed  Google Scholar 

  • Cananzi M, De Coppi P (2012) CD117(+) amniotic fluid stem cells State of the art and future perspectives. Organogenesis 8:77–88

    Article  PubMed  PubMed Central  Google Scholar 

  • Cananzi M, Atala A, De Coppi P (2009) Stem cells derived from amniotic fluid: new potentials in regenerative medicine. Reprod Biomed Online 18:17–27

    Article  PubMed  Google Scholar 

  • Colosimo A et al (2013) Prolonged in vitro expansion partially affects phenotypic features and osteogenic potential of ovine amniotic fluid-derived mesenchymal stromal cells. Cytotherapy 15:930–950

    Article  CAS  PubMed  Google Scholar 

  • Da Sacco S et al (2010) Human amniotic fluid as a potential new source of organ specific precursor cells for future regenerative medicine applications. J Urol 183:1193–1200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Da Sacco S, De Filippo RE, Perin L (2011) Amniotic fluid as a source of pluripotent and multipotent stem cells for organ regeneration. Curr Opin Organ Transplant 16:101–105

    Article  CAS  PubMed  Google Scholar 

  • De Coppi P et al (2007a) Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 25:100–106

    Article  CAS  PubMed  Google Scholar 

  • Delo DM et al (2006) Amniotic fluid and placental stem cells. Methods Enzymol 19:426–438

    Article  CAS  Google Scholar 

  • De Coppi P et al (2007b) Amniotic fluid and bone marrow derived mesenchymal stem cells can be converted to smooth muscle cells in the cryo-injured rat bladder and prevent compensatory hypertrophy of surviving smooth muscle cells. J Urol 177:369–376

    Article  PubMed  Google Scholar 

  • Di Tomo P et al (2013) Calcium sensing receptor expression in ovine amniotic fluid mesenchymal stem cells and the potential role of R-568 during osteogenic differentiation. PLoS ONE 8:e73816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Trapani M et al (2015) Immune regulatory properties of CD117(pos) amniotic fluid stem cells vary according to gestational age. Stem Cells Dev 24:132–143

    Article  CAS  PubMed  Google Scholar 

  • Galende E et al (2010) Amniotic fluid cells are more efficiently reprogrammed to pluripotency than adult cells. Cell Reprogram 12:117–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Y et al (2014) Amniotic fluid-derived stem cells demonstrated cardiogenic potential in indirect co-culture with human cardiac cells. Ann Biomed Eng 42:2490–2500

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghafarzadeh M, Eatemadi A, Fakhravar Z (2016) Human amniotic fluid derived mesenchymal stem cells cause an anti-cancer effect on breast cancer cell line in vitro. Cell Mol Biol (Noisy-le-grand) 62:102–106

    CAS  Google Scholar 

  • In ‘tAnker PS et al (2003) Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood 102:1548–1549

    Article  Google Scholar 

  • Joo S et al (2012) Amniotic fluid-derived stem cells in regenerative medicine research. Arch Pharm Res 35:271–280

    Article  CAS  PubMed  Google Scholar 

  • Kang NH et al (2012) Potential antitumor therapeutic strategies of human amniotic membrane and amniotic fluid-derived stem cells. Cancer Gene Ther 19:517–522

    Article  CAS  PubMed  Google Scholar 

  • Kaviani A et al (2001) The amniotic fluid as a source of cells for fetal tissue engineering. J Pediatr Surg 36:1662–1665

    Article  CAS  PubMed  Google Scholar 

  • Kim J et al (2007) Human amniotic fluid-derived stem cells have characteristics of multipotent stem cells. Cell Prolif 40:75–90

    Article  CAS  PubMed  Google Scholar 

  • Kim EY, Lee KB, Kim MK (2014) The potential of mesenchymal stem cells derived from amniotic membrane and amniotic fluid for neuronal regenerative therapy. BMB Rep 47:135–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mauro A et al (2010) Isolation, characterization, and in vitro differentiation of ovine amniotic stem cells. Vet Res Commun 34:S25–S28

    Article  PubMed  Google Scholar 

  • Miki T, Strom SC (2006) Amnion-derived pluripotent/multipotent stem cells. Stem Cell Rev 2:133–141

    Article  CAS  PubMed  Google Scholar 

  • Pappa KI, Anagnou NP (2009) Novel sources of fetal stem cells: where do they fit on the developmental continuum? Regen Med 4:423–433

    Article  PubMed  Google Scholar 

  • Parekkadan B, Milwid JM (2010) Mesenchymal stem cells as therapeutics. Annual Rev Biomed Eng 12:87–117

    Article  CAS  Google Scholar 

  • Peister A et al (2009) Amniotic fluid stem cells produce robust mineral deposits on biodegradable Scaffolds. Tissue Eng Part A 15:3129–3138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phermthai T et al (2010) A novel method to derive amniotic fluid stem cells for therapeutic purposes. BMC Cell Biol 11:79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Priest et al (1984) Metabolism of [4-14C] androstenedione by cells cultured from human amniotic fluid. J Steroid Biochem 20:935–939

    Article  PubMed  Google Scholar 

  • Prusa AR et al (2003) Oct-4-expressing cells in human amniotic fluid: a new source for stem cell research? Hum Reprod 18:1489–1493

    Article  PubMed  Google Scholar 

  • Rennie K et al (2012) Applications of amniotic membrane and fluid in stem cell biology and regenerative medicine. Stem Cells Int 2012:721538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rota C et al (2012) Human amniotic fluid stem cell preconditioning improves their regenerative potential. Stem Cells Dev 21:1911–1923

    Article  CAS  PubMed  Google Scholar 

  • Roubelakis MG et al (2007) Molecular and proteomic characterization of human mesenchymal stem cells derived from amniotic fluid: comparison to bone marrow mesenchymal stem cells. Stem Cells Dev 16:931–951

    Article  CAS  PubMed  Google Scholar 

  • Skardal A et al (2012) Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds. Stem Cells Transl Med 1:792–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai MS et al (2004) Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol. Hum Reprod 19:1450–1456

    Article  PubMed  Google Scholar 

  • Wang Y et al (2016) The transplantation of Akt-overexpressing amniotic fluid-derived mesenchymal stem cells protects the heart against ischemia-reperfusion injury in rabbits. Mol Med Rep 14:234–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young BK et al (2016) Amniotic fluid as a source of multipotent cells for clinical use. J Perinat Med 44:333–337

    Article  PubMed  Google Scholar 

  • Zavatti M et al (2015) Critical-size bone defect repair using amniotic fluid stem cell/collagen constructs: effect of oral ferutinin treatment in rats. Life Sci 121:174–183

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Project supported by the National Natural Science Foundation of China (Grant Nos. 31472099, 31672404).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiangchen Li or Weijun Guan.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pei, W., Lu, T., Wang, K. et al. Biological characterization and pluripotent identification of ovine amniotic fluid stem cells. Cytotechnology 70, 1009–1021 (2018). https://doi.org/10.1007/s10616-017-0115-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-017-0115-2

Keywords

Navigation