Skip to main content
Log in

Hypoglycemic effect of polysaccharides produced by submerged mycelial culture of Laetiporus sulphureus on streptozotocininduced diabetic rats

  • Articles
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The hypoglycemic effect of the crude extracellular polysaccharides (EPS) produced from submerged mycelial culture of an edible mushroom Laetiporus sulphureus var. miniatus in streptozotocin (STZ)-induced diabetic rat was investigated. Hypoglycemic effect of EPS was evaluated in STZ-induced diabetic rats, and its possible mechanism was suggested by the results of western blot analysis and immunohistochemical staining. The results revealed that orally administrated EPS, when given 48 h after STZ treatment exhibited an excellent hypoglycemic effect, lowering the average plasma glucose level in EPS-fed rats to 43.5% of STZ-treated rats. The plasma levels of total cholesterol and triglyceride were significantly increased upon STZ treatment and they were markedly reduced by oral administration of EPS to near-normal levels. The results of immunohistochemical staining of the pancreatic tissues showed that EPS treatment considerably increased the insulin antigenesity of diabetic islet β-cells, suggesting the possibility of β-cell proliferation or regeneration by EPS therapy. Moreover, immunoblotting study revealed that protein levels of iNOS was increased and SOD2, catalase, GPx were significantly increased after EPS treatments, suggesting alleviated oxidative stress mediated by STZ. Orally administrated EPS exhibited considerable hypoglycemic effect in STZ-induced diabetic rats and that these EPS may be useful for the management of diabetes mellitus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kawasaki, E., N. Abiru, and K. Eguchi (2004) Prevention of type 1 diabetes: from the view point of β-cell damage. Diabetes. Res. Clin. Pract. 66: S27–S32.

    Article  CAS  Google Scholar 

  2. Khan, K. and M. Safdar (2003) Role of diet, nutrients, spices, and natural products in diabetes mellitus. Asia Pac. J. Clin. Nutr. 2: 1–12.

    Google Scholar 

  3. Gray, A. M. and P. R. Flatt (1997) Nature’s own pharmacy: the diabetes perspective. Proc. Nutr. Soc. 56: 507–517.

    Article  CAS  Google Scholar 

  4. Lamba, S. S., K. Y. Buch, H. Lewis, and J. Lamba, (2000) Phytochemicals as potential hypoglycemic agents. Studies in Natural Products Chemistry 21: 457–496.

    Article  CAS  Google Scholar 

  5. Grover, J. K., S. Yadav, and V. Vats (2002) Medicinal plants of India with anti-diabetic potential. J. Ethnopharmacol. 81: 81–100.

    Article  CAS  Google Scholar 

  6. Li, W. L., H. C. Zheng, J. Bukuru, and N. De Kimpe (2004) Natural medicines used in the traditional Chinese medical system for therapy of diabetes mellitus. J. Ethnopharmacol. 92: 1–21.

    Article  CAS  Google Scholar 

  7. Kiho, T., A. Yamane, J. Hui, S. Usui, and S. Ukai (1996) Polysaccharide in fungi. XXXVI. Hypoglycemic activity of a polysaccharide (CS-F30) from the cultural mycelium of Cordyceps sinensis and its effects on glucose metabolism in mouse liver. Biol. Pharm. Bull. 19: 294–296.

    CAS  Google Scholar 

  8. Kiho, T., K. Ookubo, S. Usui, S. Ukai, and K. Hirano (1999) Structural features and hypoglycemic activity of a polysaccharide (CS-F10) from the cultured mycelium of Cordyceps sinensis. Biol. Pharm. Bull. 22: 966–970.

    CAS  Google Scholar 

  9. Gray, A. M. and P. R. Flatt (1998) Insulin-releasing and insulin-like activity of Agaricus campestris (mushroom). J. Endocrinol. 157: 259–266.

    Article  CAS  Google Scholar 

  10. Lo, H. C., S. T. Tu, K. C. Lin, and S. C. Lin (2004) The anti-hyperglycemic activity of the fruiting body of Cordyceps in diabetic rats induced by nicotinamide and streptozotocin. Life Sci. 74: 2897–2908.

    Article  CAS  Google Scholar 

  11. Zhang, H. N. and Z. B. Lin (2004) Hypoglycemic effect of Ganoderma lucidum polysaccharides. Acta. Pharmacol. Sin. 25: 191–195.

    Google Scholar 

  12. Hu, S. H., J. C. Wang, J. L. Lien, E. T. Liaw, and M. Y. Lee (2006) Antihyperglycemic effect of polysaccharide from fermented broth of Pleurotus citrinopileatus. Appl. Microbiol. Biotechnol. 70: 107–113.

    Article  CAS  Google Scholar 

  13. Kim, D. H., B. K. Yang, S. C. Jeong, N. J. Hur, S. Das, J. W. Yun, J. W. Choi, Y. S. Lee, and C. H. Song (2001) A preliminary study on the hypoglycemic effect of the exo-polymers produced by five different medicinal mushrooms. J. Microbiol. Biotechnol. 11: 167–171.

    CAS  Google Scholar 

  14. Kim, D. H., B. K. Yang, S. C. Jeong, J. B. Park, S. P. Cho, S. Das, J. W. Yun, and C. H. Song (2001) Production of a hypoglycemic, extracellular polysaccharide from the submerged culture of the mushroom, Phellinus linteus. Biotechnol. Lett. 23: 513–517.

    Article  CAS  Google Scholar 

  15. Kim, D. H., B. K. Yang, N. J. Hur, S. Das, J. W. Yun, Y. S. Choi, and C. H. Song (2001) Hypoglycemic effects of mycelia produced from a submerged culture of Phel linus linteus (Berk. et Curt) Teng (Aphyllophoromycetideae) in streptozotocin-induced diabetic rats. Int. J. Med. Mushr. 3: 21–26.

    Google Scholar 

  16. Yang, B. K., D. H. Kim, S. C. Jeong, S. Das, Y. S. Choi, J. S. Shin, S. C. Lee, and C. H. Song (2002) Hypoglycemic effect of a Lentinus edodes exo-polymer produced from a submerged mycelial culture. Biosci. Biotech. Biochem. 66: 937–942.

    Article  CAS  Google Scholar 

  17. Hwang, H. J., S. W. Kim, J. M. Lim, J. H. Joo, H. O. Kim, H. M. Kim, and J. W. Yun (2005) Hypoglycemic effect of crude exopolysaccharides produced by a medicinal mushroom Phellinus baumii in streptozotocininduced diabetic rats. Life Sci. 76: 3069–3080.

    Article  CAS  Google Scholar 

  18. Zhang, G., Y. Huang, Y. Bian, J. H. Wong, T. B. Ng, and H. Wang (2006) Hypoglycemic activity of the fungi Cordyceps militaris, Cordyceps sinensis, Tricholoma mongolicum, and Omphalia lapidescens in streptozotocin-induced diabetic rats. Appl. Microbiol. Biot. 72: 1152–1156.

    Article  CAS  Google Scholar 

  19. Herr, R. R., J. K. Jahnke, and A. D. Argoudelis (1967) The structure of streptozotocin. J. Am. Chem. Soc. 89: 4808–4809.

    Article  CAS  Google Scholar 

  20. Schnedl, W. J., S. Ferber, J. H. Johnson, and C. B. Newgard (1994) STZ transport and cytotoxicity. Specific enhancement in GLUT2-expressing cells. Diabetes 43: 1326–1333.

    Article  CAS  Google Scholar 

  21. Like, A. A. and A. Rosani (1976) Streptozotocin-induced pancreatic insulitis: new model of diabetes mellitus. Science 193: 415–417.

    Article  CAS  Google Scholar 

  22. Yamagishi, N., K. Nakayama, T. Wakatsuki, and T. Hatayama (2001) Characteristic changes of stress protein expression in streptozotocin induced diabetic rats. Life Sci. 9: 2603–2609.

    Article  Google Scholar 

  23. Kalendra, B., M. Oztruk, M. Tuncdemir, O. Usyal, F. K. Dagistanli, I. Yagenaga, and E. Erek (2002) Renoprotective effect of valsartan and enalapril in STZ-induced diabetes in rats. Acta. Histochem. 104: 123–130.

    Article  Google Scholar 

  24. Stefek, M., N. Tribulova, A, Gajdoski, and A. Gajdosikova (2002) The pyridoindole antioxidant stobadine attenuates histochemical changes in kidney of STZinduced diabetic rats. Acta. Histochem. 104: 413–417.

    Article  Google Scholar 

  25. Imazeki, R. and T. Hongo (1998) Colored illustrations of mushrooms of Japan. pp. 141–142. Hoikusha Press, Osaka, Japan.

    Google Scholar 

  26. Hwang, H. S., S. H. Lee, Y. M. Baek, S. W. Kim, Y. K. Jeong, and J. W. Yun (2008) Production of extracellular polysaccharides by submerged mycelial culture of Laetiporus sulphureus var. miniatus and their insulinotropic properties. Appl. Microbiol. Biot. 78: 419–429.

    Article  CAS  Google Scholar 

  27. Junod, A., A. E. Lambert, W. Stauffacher, and A. E. Renold (1969) Diabetogenic action of streptozotocin: relationship of dose to metabolic response. J. Clin. Invest. 48: 2129–2139.

    Article  CAS  Google Scholar 

  28. Bolzán, A. D. and M. S. Bianchi (2002) Genotoxicity of streptozotocin. Mutat. Res. 512: 121–134.

    Article  Google Scholar 

  29. Crouch, R., G. Kimsey, D. G. Priest, A. Sarda, and M. G. Buse (1978) Effect of streptozotocin on erythrocyte and retinal superoxide dismutase. Diabetologia 15: 53–57.

    Article  CAS  Google Scholar 

  30. Kamtchouing, P., S. D. Sokeng, P. F. Moundipa, P. Watcho, H. B. Jatsa, and D. Lontsi (1998) Protective role of Anacardium occidentale extract against streptozotocin-induced diabetes in rats. J. Ethnopharmacol. 62: 95–99.

    Article  CAS  Google Scholar 

  31. Gandy, S. E., M. G. Buse, and R. K. Crouch (1982) Protective role of superoxide dismutase against diabetogenic drugs. J. Clin. Invest. 70: 650–658.

    Article  CAS  Google Scholar 

  32. Chakravarthy, B. K., S. Gupta, S. S. Gambhir, and K. D. Gode (1981) The prophylactic action of (-)epicatechin against alloxan-induced diabetes in rats. Life Sci. 29: 2043–2047.

    Article  CAS  Google Scholar 

  33. Cam, M. C., W. M. Li, and J. H. McNeill (1997) Partial preservation of pancreatic β-cells by Vanadium: evidence for long-term amelioration of diabetes. Metabolism 46: 769–778.

    Article  CAS  Google Scholar 

  34. Stadler, K., M. G. Bonini, S. Dallas, J. J. Jiang, R. Radi, R. P. Mason, and M. B. Kadiiska (2008) Involvement of inducible nitric oxide synthase in hydroxyl radicalmediated lipid peroxidation in streptozotocin-induced diabetes. Free. Radical. Bio. Med. 45: 866–874.

    Article  CAS  Google Scholar 

  35. Kaneto, H., J. Fujii, H. G. Seo, K. Suzuki, T. Matsuoka, M. Nakamura, H. Tatsumi, Y. Yamasaki, T. Kamada, and N. Taniguchi (1995) Apoptotic cell death triggered by nitric oxide in pancreatic beta-cells. Diabetes 44: 733–738.

    Article  CAS  Google Scholar 

  36. Jang, Y. Y., J. H. Song, Y. K. Shin, E. S. Han, and C. S. Lee (2000) Protective effect of boldine on oxidative mitochondrial damage in streptozotocin-induced diabetic rats. Pharm. Res. 42: 361–371.

    Article  CAS  Google Scholar 

  37. Hong, J., M. Bose, J. Ju, J. Ryu, X. Chenm, S. Sang, M. J. Lee, and C. S. Yang (2004) Modulation of arachidonic acid metabolism by curcumin and related β- diketone derivatives: effects on cytosolic phospholipase A2, cyclooxygenases, and 5-lipoxygenase. Carcinogenesis 25: 1671–1679.

    Article  CAS  Google Scholar 

  38. Li, X. M. (2007) Protective effect of Lycium barbarum polysaccharides on streptozotocin-induced oxidative stress in rats. Int. J. Biol. Macromol. 40: 461–465.

    Article  CAS  Google Scholar 

  39. Coskun, O., M. Kanter, A. Korkmaz, and S. Oter (2005) Quercetin, a flavonoid antioxidant, prevents and protects streptozotocin-induced oxidative stress and β-cell damage in rat pancreas. Pharm. Res. 51: 117–123.

    Article  CAS  Google Scholar 

  40. Friesen, N. T., A. S. Buchau, P. Schott-Ohly, A. Lgssiar, and H. Gleichmann (2004) Generation of hydrogen peroxide and failure of antioxidative responses in pancreatic islets of male C57BL/6 mice are associated with diabetes induced by multiple low doses of streptozotocin. Diabetologia 47: 676–685.

    Article  CAS  Google Scholar 

  41. Oberley, L. W. (1988) Free radicals and diabetes. Free. Radical. Bio. Med. 5: 13–124.

    Article  Google Scholar 

  42. Baynes, J. W. and S. R. Thorpe (1999) Role of oxidative stress in diabetic complication: a new perspective on an old paradigm. Diabetes 48: 1–9.

    Article  CAS  Google Scholar 

  43. Robbins, M. J., R. A. Sharp, A. E. Slonium, and I. M. Burr (1980) Protection against streptozotocin-induced diabetes by superoxide dismutase. Diabetologia 18: 55–58.

    Article  CAS  Google Scholar 

  44. Sandler, S. and A. Andersson (1982) The partial protective effect of the hydroxyl radical scavenger dimethyl urea on streptozotocin-induced diabetes in the mouse in vivo and in vitro. Diabetologia 23: 374–378.

    Article  CAS  Google Scholar 

  45. Li, S. P., G. H. Zhang, Q. Zeng, Z. G. Huang, Y. T. Wang, T. T. X. Dong, and K. W. K. Tsim (2006) Hypoglycemic activity of polysaccharide, with antioxidation, isolated from cultured Cordyceps mycelia. Phytomedicine 13: 428–433.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong Won Yun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, H.S., Yun, J.W. Hypoglycemic effect of polysaccharides produced by submerged mycelial culture of Laetiporus sulphureus on streptozotocininduced diabetic rats. Biotechnol Bioproc E 15, 173–181 (2010). https://doi.org/10.1007/s12257-009-0160-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-009-0160-6

Keywords

Navigation