Skip to main content
Log in

Prevention of in Vitro thermal aggregation and inactivation of foreign proteins by the hyperthermophilic group II chaperonin α-subunit from Aeropyrum pernix K1

  • Articles
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

In this study, we report that the recombinant α subunit chaperonin protein (ApCpnA) from Aeropyrum pernix K1 can efficiently prevent the thermal aggregation and inactivation of foreign model proteins, such as citrate synthase (CS) from= porcine heart, alcohol dehydrogenase (ADH) from Saccharomyces cerevisiae (four 37.5 kDa subunits), and malate dehydrogenase (MDH) from Thermus flavus (two 67 kDa subunits)K=In the presence of ApCpnA and ATP, the thermal aggregation of CS and ADH were prevented by 90 and 65%, respectively, at each 43 and 50°C. Also, the activities of CS, ADH, and MDH under the thermal inactivation conditions were stably maintained at higher than 80% by addition of ApCpnA and ATP, while the activities of those enzymes in the absence of ApCpnA and ATP were dramatically inactivated and decreased below 20% within 30 min. Based on these results, we propose that the α subunit chaperonin from the hyperthermophilic archaeon, A. pernix K1 can be utilized to enhance the durability and cost effectiveness of high-temperature biocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim, S., K. R. Willson, and A. L. Horwich (1994) Cytosolic chaperonin subunits have a conserved ATPase domain but diverged polypeptide-binding domains. Trends Biochem. Sci. 19: 543–548.

    Article  CAS  Google Scholar 

  2. Mayhew, M., A. C. da Silva, J. Martin, H. Erdjument-Bromage, P. Tempst, and F. U. Hartl (1996) Protein folding in the central cavity of the GroEL-GroES chaperonin complex. Nature 379: 420–426.

    Article  CAS  Google Scholar 

  3. Gutsche, I., L. O. Essen, and W. Baumeister (1999) Group II chaperonins: New TRiC(k)s and turns of a protein folding machine. J. Mol. Biol. 293: 295–312.

    Article  CAS  Google Scholar 

  4. Kubota, H., G. Hynes, and K. Willson (1995) The chaperonin containing t-complex polypeptide 1(TCP-1) multisubunit machinery assisting in protein folding and assembly in the eukaryotic cytosol. Eur. J. Biochem. 230: 3–16.

    Article  CAS  Google Scholar 

  5. Trent, J. D., E. Nimmesgern, J. S. Wall, F. U. Hartl, and A. L. Horwich (1991) A molecular chaperone from a thermophilic archaebacterium is related to the eukaryotic protein t-complex polypeptide-1. Nature 354: 490–493.

    Article  CAS  Google Scholar 

  6. Marco, S., D. Ureñ, J. L. Carrascosa, T. Waldmann, J. Peters, R. Hegerl, G. Pfeifer, H. Sack-Kongehl, and W. Baumeister (1994) The molecular chaperone TF55. Assessment of symmetry. FEBS Lett. 341: 152–155.

    CAS  Google Scholar 

  7. Pipps, B. M., D. Typke, R. Hegerl, S. Volker, A. Hoffmann, K. O. Stetter, and W. Baumeister (1993) Structure of a molecular chaperone from a thermophilic archaebacterium. Nature 361: 475–477.

    Article  Google Scholar 

  8. Langer, T., G. Pfeifer, J. Martin, W. Baumeister, and F. U. Hartl (1992) Chaperonin mediated protein folding: GroES binds to one end of the GroEL cylinder, which accommodates the protein substrate within its central cavity. EMBO J. 11: 4757–4765.

    CAS  Google Scholar 

  9. Yoshida, T., R. Kawaguchi, H. Taguchi, M. Yoshida, T. Yasunaga, T. Wakabayashi, M. Yohda, and T. Maruyama (2002) Archaeal group II chaperonin mediates protein folding in the cis-cavity without a detachable GroES-like co-chaperonin. J. Mol. Biol. 315: 73–85.

    Article  CAS  Google Scholar 

  10. Ditzel, L., J. Lowe, D. Stock, K. O. Stetter, H. Huber, R. Huber, and S. Steinbacher (1998) Crystal structure of the thermosome, the archaeal chaperonin and homolog of CCT. Cell 93: 125–138.

    Article  CAS  Google Scholar 

  11. Minuth, T., G. Frey, P. Lindner, R. Rachel, K. O. Stetter, and R. Jaenicke (1998) Recombinant homo- and heterooligomers of an ultrastable chaperonin from the archaeon Pyrodictium occultum show chaperone activity in vitro. Eur. J. Biochem. 258: 837–845.

    Article  CAS  Google Scholar 

  12. Knapp, S., I. Schhmidt-Krey, H. Hebert, T. Bergman, H. Jornvall, and R. Ladenstein (1994) The molecular chaperonin TF55 from the thermophilic archaeon Sulfolobus solfataricus. A biochemical and structural characterization. J. Mol. Biol. 242: 397–407.

    CAS  Google Scholar 

  13. Waldmann, T., E. Nimmesgern, M. Nitsch, J. Peters, G. Pfeifer, S. Muller, J. Kellermann, A. Engel, F. U. Hartl, and W. Baumeister (1995) The thermosome of Thermoplasma acidophilum and its relationship to the eukaryotic chaperonin TRiC. Eur. J. Biochem. 227: 848–856.

    Article  CAS  Google Scholar 

  14. Hirai, H., K. Noi, K. Hongo, T. Mizobata, and Y. Kawata (2008) Functional characterization of the recombinant group II chaperonin alpha from Thermoplasma acidophilum. J. Biochem. 143: 505–515.

    Article  CAS  Google Scholar 

  15. Andra, S., G. Frey, M. Nitsch, W. Baumeister, and K. O. Stetter (1996) Purification and structural characterization of the thermosome from the hyperthermophilic archaeum Methanopyrus kandleri. FEBS Lett. 379: 127–131.

    Article  CAS  Google Scholar 

  16. Minuth, T., M. Henn, K. Rutkat, S. Andr Rachel, K. O. Stetter, and R. Jaenicke (1999) The recombinant thermosome from the hyperthermophilic archaeon Methanopyrus kandleri: in vitro analysis of its chaperone activity. Biol. Chem. 380: 55–62.

    Article  CAS  Google Scholar 

  17. Isumi, M., S. Fuiwara, M. Takagi, S. Kanaya, and T. Imanaka (1999) Isolation and characterization of a second subunit of molecular chaperonin from Pyrococcus kodakaraensis KOD1: analysis of an ATPase-deficient mutant enzyme. Appl. Environ. Microbiol. 65: 1801–1805.

    Google Scholar 

  18. Yan, Z., S. Fujiwara, K. Kohda, M. Takagi, and T. Imanaka (1997) In vitro stabilization and in vivo solubilization of foreign proteins by the beta subunit of a chaperonin from the hyperthermophilic archaeon Pyrococcus sp. strain KOD1. Appl. Environ. Microbiol. 63: 785–789.

    CAS  Google Scholar 

  19. Yoshida, T., M. Yohda, T. Iida, T. Maruyama, H. Taguchi, K. Yazaki, T. Ohta, M. Odaka, I. Endo, and Y. Kagawa (1997) Structural and functional characterization of homo-oligomeric complexes of alpha and beta chaperonin subunits from the hyperthermophilic archaeum Thermococcus strain KS-1. J. Mol. Biol. 273: 635–645.

    Article  CAS  Google Scholar 

  20. Furutani, M., T. Iida, T. Yoshida, and T. Maruyama (1998) Group II chaperonin in a thermophilic methanogen Methanococcus thermolithotrophicus. Chaperone activity and filament-forming ability. J. Biol. Chem. 273: 28399–28407.

    Article  CAS  Google Scholar 

  21. Okochi, M., H. Matsuzaki, T. Nomura, N. Ishii, and M. Yohda (2005) Molecular characterization of the group II chaperonin from the hyperthermophilic archaeum Pyrococcus horikoshii OT3. Extremophiles 9: 127–134.

    Article  CAS  Google Scholar 

  22. Son, H. J., E. J. Shin, S. W. Nam, D. E. Kim, and S. J. Jeon (2007) Properties of the α subunit of a chaperonin from the hyperthermophilic crenarchaeon Aeropyrum pernix K1. FEMS Microbiol. Lett. 266: 103–109.

    Article  CAS  Google Scholar 

  23. Chen, H. Y., Z. M. Chu, Y. H. Ma, Y. Zhang, and S. L. Yang (2007) Expression and characterization of the chaperonin molecular machine from the hyperthermophilic archaeon Pyrococcus furiosus. J. Basic Microbiol. 47: 132–137.

    Article  CAS  Google Scholar 

  24. Guagliardi, A., L. Cerchia, S. Bartolucci, and M. Rossi (1994) The chaperonin from the archaeon Sulfolobus solfataricus promotes correct refolding and prevents thermal denaturation in vitro. Protein Sci. 3: 1436–1443.

    Article  CAS  Google Scholar 

  25. Guagliardi, A., L. Cerchia, and M. Rossi (1995) Prevention of in vitro protein thermal aggregation by the Sulfolobus solfataricus chaperonin. Evidence for nonequivalent binding surfaces on the chaperonin molecule. J. Biol. Chem. 270: 28126–28132.

    Article  CAS  Google Scholar 

  26. Kohda, J., H. Kawanishi, K. Suehara, Y. Nakano, and T. Yano (2006) Stabilization of free and immobilized enzymes using hyperthermophilic chaperonin. J. Biosci. Bioeng. 101: 131–136.

    Article  CAS  Google Scholar 

  27. Laksanalamai, P., A. R. Pavlov, A. I. Slesarev, and F. T. Robb (2006) Stabilization of Taq DNA polymerase at high temperature by protein folding pathways from a hyperthermophilic archaeon, Pyrococcus furiosus. Biotechnol. Bioeng. 93: 1–5.

    Article  CAS  Google Scholar 

  28. Hongo, K., H. Hirai, C. Uemura, S. Ono, J. Tsunemi, T. Higurashi, T. Mizobata, and Y. Kawata (2006) A novel ATP/ADP hydrolysis activity of hyperthermostable group II chaperonin in the presence of cobalt or manganese ion. FEBS Lett. 580: 34–40.

    Article  CAS  Google Scholar 

  29. Kohda, J., H. Kawanishi, K. Suehara, Y. Nakano, and T. Yano (2006) Stabilization of free and immobilized enzyme using hyperthermophilic chaperonin. J. Biosci. Bioeng. 101: 131–136.

    Article  CAS  Google Scholar 

  30. Zhi, W., S. J. Landry, L. M. Gierasch, and P. A. Srere (1992) Renaturation of citrate synthase: influence of denaturant and folding assistants. Protein Sci. 1: 522–529.

    Article  CAS  Google Scholar 

  31. Wiech, H., J. Buchner, R. Zimmermann, and U. Jakob (1992) Hsp90 chaperones protein folding in vitro. N ature 358: 169–170.

    CAS  Google Scholar 

  32. Buchner, J., M. Schmidt, M. Fuchs, R. Jaenicke, R. Rudolph, F. X. Schmid, and T. Kiefhaber (1991) GroE facilitates refolding of citrate synthase by suppressing aggregation. Biochem. 30: 1586–1591.

    Article  CAS  Google Scholar 

  33. Chang, Z., T. P. Primm, J. Jakana, I. H. Lee, I. Serysheva, W. Chiu, H. F. Gilbert, and F. A. Quiocho (1996) Mycobacterium tuberculosis 16-kDa antigen (Hsp 16.3) functions as an oligomeric structure in vitro to suppress thermal aggregation. J. Biol. Chem. 271: 7218–7223.

    Article  CAS  Google Scholar 

  34. Zhi, W., P. Srere, and C. T. Evans (1991) Conformational stability of pig citrate synthase and some activesite mutants. Biochem. 30: 9281–9286.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soo-Wan Nam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shin, EJ., Lee, JW., Kim, JH. et al. Prevention of in Vitro thermal aggregation and inactivation of foreign proteins by the hyperthermophilic group II chaperonin α-subunit from Aeropyrum pernix K1. Biotechnol Bioproc E 14, 702–707 (2009). https://doi.org/10.1007/s12257-009-0093-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-009-0093-0

Keywords

Navigation