Skip to main content
Log in

Aeration alleviates ethanol inhibition and glycerol production during fed-batch ethanol fermentation

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

In this study, we investigated the effects of aeration on ethanol inhibition and glycerol production during fed-batch ethanol fermentation. When aeration was conducted at 0.13, 0.33, and 0.8 vvm, the ethanol productivity, specific ethanol production rate, and ethanol yield in the presence of greater than 100 g/L of ethanol were higher than when aeration was not conducted. In addition, estimation of the parameters (α and β) in a model equation of ethanol inhibition kinetics indicated that aeration alleviated ethanol inhibition against the specific growth rate and the specific ethanol production rate. Specifically, when aeration was conducted, the glycerol yield and specific glycerol production rate decreased approximately 50 and 70%, respectively. Finally, the results of this study indicated that aeration during fed-batch ethanol fermentation may improve the ethanol concentration in the final culture broth, as well as the ethanol productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balata, M., H. Balata, and C. Őz (2008) Progress in bioethanol processing. Prog. Energy Combust. Sci. 34: 551–573.

    Article  Google Scholar 

  2. Cardona, C. A. and Ó. J. Sánchez (2007) Fuel ethanol production: Process design trends and integration opportunities. Bioresour. Technol. 98: 2415–2457.

    Article  CAS  Google Scholar 

  3. Demirbas, A (2007) Progress and recent trends in biofuels. Prog. Energy Combust. Sci. 33: 1–18.

    Article  CAS  Google Scholar 

  4. Galbe, M., P. Sassner, A. Wingren, and G. Zacchi (2007) Process engineering economics of bioethanol production. Adv. Biochem. Engin/Biotechnol. 108: 303–327.

    Article  CAS  Google Scholar 

  5. Hamelinck, C. N., G. van Hooijdonk, and A. P. C. Faaij (2005) Ethanol from lignocellulosic biomass: technoeconomic performance in short-, middle- and long-term. Biomass Bioenergy 28: 384–410.

    Article  CAS  Google Scholar 

  6. Huanga, H. J., S. Ramaswamya, U. W. Tschirner, and B. V. Ramaraob (2008) A review of separation technologies in current and future biorefineries. Sep. Purif. Technol. 62: 1–21.

    Article  Google Scholar 

  7. Sánchez, Ó. J. and C. A. Cardona (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour. Technol. 99: 5270–5295.

    Article  Google Scholar 

  8. Sassner, P., M. Galbe, and G. Zacchi (2008) Technoeconomic evaluation of bioethanol production from three different lignocellulosic materials. Biomass Bioenergy 32: 422–430.

    Article  CAS  Google Scholar 

  9. Jeon, B. Y., S. J. Kim, D. H. Kim, B. K. Na, D. H. Park, H. T. Tran, R. Zhang, and D. H. Ahn (2007) Development of a serial bioreactor system for direct ethanol production from starch using Aspergillus niger and Saccharomyces cerevisiae. Biotechnol. Bioprocess Eng. 12: 566–573.

    Article  CAS  Google Scholar 

  10. Choi, G. Wook., H. W. Kang, Y. R. Kim, and B. W. Chung (2008) Ethanol production by Zymomonas mobilis CHZ2501 from industrial starch feedstocks. Biotechnol. Bioprocess Eng. 13: 765–771.

    Article  CAS  Google Scholar 

  11. Bai, F. W., L. J. Chen, W. A. Anderson, and M. Moo-Young (2004) Parameter oscillations in very high gravity medium continuous ethanol fermentation and their attenuation on multi-stage packed column bioreactor system. Biotechnol. Bioeng. 88: 558–566.

    Article  CAS  Google Scholar 

  12. Bai, F. W., L. J. Chen, Z. Zhang, W. A. Anderson, and M. Moo-Young (2004) Continuous ethanol production and evaluation of yeast cell lysis and viability loss under very high gravity medium conditions. J. Biotechnol. 110: 287–293.

    Article  CAS  Google Scholar 

  13. Hayashida, S. and K. Ohta (1981) Formation of high concentrations of alcohol by various yeasts. J. Inst. Brew. 87: 42–44.

    CAS  Google Scholar 

  14. Krishnan, M. S., Y. Xia, G. T. Tsao, N. Kasthurikrishnan, N. Srinivasan, and R. G. Cook (1995) Process engineering of high-ethanol-tolerance yeast for the manufacture of ethanol. Appl. Biochem. Biotechnol. 51/52: 479–493.

    Article  CAS  Google Scholar 

  15. Mota, M., J. M. Besie, P. Strehaiano, and G. Goma (1987) A simple device for fed-batch control in alcoholic fermentation. Biotechnol. Bioeng. 24: 775–777.

    Article  Google Scholar 

  16. Thomas, K. C., S. H. Hynes, A. M. Jones, and W. M. Ingledew (1993) Production of fuel alcohol from wheat by VHG technology. Appl. Biochem. Biotechnol. 43: 211–226.

    Article  CAS  Google Scholar 

  17. Thomas, K. C. and W. M. Ingledew (1990) Fuel alcohol production: effects of free amino nitrogen on fermentation of very-high-gravity wheat mash. Appl. Environ. Microbiol. 56: 2046–2050.

    CAS  Google Scholar 

  18. Thomas, K. C. and W. M. Ingledew (1992) Production of 21% (v/v) ethanol by fermentation of very high gravity (VHG) wheat mashes. J. Ind. Microbiol. 10: 61–68.

    Article  CAS  Google Scholar 

  19. Wang, S., K. C. Thomas, K. Sosulski, and W. M. Ingledew (1999) Grain pearling and very high gravity (VHG) fermentation technologies for fuel alcohol production from rye and triticale. Process Biochem. 34: 421–428.

    Article  CAS  Google Scholar 

  20. Loung, J. H. T. (1985) Kinetics of ethanol inhibition in alcohol fermentation. Biotechnol. Bioeng. 27: 280–285.

    Article  Google Scholar 

  21. Marín, M. R. (1999) Alcoholic fermentation modeling: Current state and perspectives. Am. J. Enol. Vitic. 50: 166–178.

    Google Scholar 

  22. Bai, F. W., W. A. Anderson, and M. Moo-Young (2008) Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnol. Adv. 26: 89–105.

    Article  CAS  Google Scholar 

  23. Alfenore, S., X. Cameleyre, L. Benbadis, C. Bideaux, J. L. Uribelarrea, G. Goma, C. Molina-Jouve, and S. E. Guillouet (2004) Aeration strategy: a need for very high ethanol performance in Saccharomyces cerevisiae fed-batch process. Appl. Microbiol. Biotechnol. 63: 537–542.

    Article  CAS  Google Scholar 

  24. Alfenore, S., C. Molina-Jouve, S. E. Guillouet, J. -L. Uribelarrea, G. Goma, and L. Benbadis (2002) Improving ethanol production and viability of Saccharomyces cerevisiae by a vitamin feeding strategy during fed-batch process. Appl. Microbiol. Biotechnol. 60: 67–72.

    Article  CAS  Google Scholar 

  25. Cot, M., M. O. Loret, J. François, and L. Benbadis (2007) Physiological behaviour of Saccharomyces cerevisiae in aerated fed-batch fermentation for high level production of bioethanol. FEMS Yeast Res. 7: 22–32.

    Article  CAS  Google Scholar 

  26. Furukawa, K., E. Heinzle, and I. J. Dunn (1983) Influence of oxygen on growth of Saccharomyces cerevisiae in continuous culture. Biotechnol. Bioeng. 25: 2293–2317.

    Article  CAS  Google Scholar 

  27. Hoppe, G. K. and G. S. Hansford (1984) The effect of micro-aerobic conditions on continuous ethanol production by Saccharomyces cerevisiae. Biotechnol. Lett. 6: 681–686.

    Article  CAS  Google Scholar 

  28. Grosz, R. and G. Stephanopoulos (1990) Physiology, biochemical, and mathematical studies of micro-aerobic continuous ethanol fermentation by Saccharomyces cerevisiae. I: Hysteresis, oscillations, and maximum specific ethanol productivities in chemostat culture. Biotechnol. Bioeng. 36: 1006–1019.

    Article  CAS  Google Scholar 

  29. Kirsop, B. H. (1981) Aeration in fermentation for ethanol production. Enzyme Microb. Technol. 3: 375–375.

    Article  Google Scholar 

  30. Ryu, D. D. Y., Y. J. Kim, and J. H. Kim (1984) Effect of air supplement on the performance of continuous ethanol fermentation system. Biotechnol. Bioeng. 26: 12–16.

    Article  CAS  Google Scholar 

  31. Sweere, A. P. J., J. R. Mesters, L. Janse, K. Ch. A. M. Luyben, and N. W. F. Kossen (1988) Experimental simulation of oxygen profiles and their influence on baker’s yeast production: I. One-fermentor system. Biotechnol. Bioeng. 31: 567–578.

    Article  CAS  Google Scholar 

  32. Costenoble, R., H. Valadi, L. Gustafsson, C. Niklasson, and C. J. Franzén (2000) Microaerobic glycerol formation in Saccharomyces cerevisiae. Yeast 16: 1483–1495.

    Article  CAS  Google Scholar 

  33. Franzen, C. J. (2003) Metabolic flux analysis in RQ-controlled microaerobic ethanol production by Saccharomyces cerevisiae. Yeast 20: 117–132.

    Article  CAS  Google Scholar 

  34. Kuriyama, H. and H. Kobayashi (1993) Effects of oxygen supply on yeast growth and metabolism in continuous fermentation. J. Ferment. Bioeng. 75: 364–367.

    Article  CAS  Google Scholar 

  35. Weusthuis, R. A., W. Visser, J. T. Pronk, W. A. Scheffers, and J. P. van Dijken (1994) Effects of oxygen limitation on sugar metabolism in yeasts: a continuous-culture study of the Klyuver effect. Microbiology 140: 703–715.

    Article  CAS  Google Scholar 

  36. Seo, H. -B., S. S. Kim, H. -Y. Lee, and K. -H. Jung (2009) High-level production of ethanol during fed-batch ethanol fermentation with a controlled aeration rate and non-sterile glucose powder feeding of Saccharomyces cerevisiae. Biotechnol. Bioprocess Eng. 14: 591–598.

    Article  Google Scholar 

  37. Bideaux, C., S. Alfenore, X. Cameleyre, C. Molina-Jouve, J. L. Uribelarrea, and S. E. Guillouet (2006) Minimization of glycerol production during the high-performance fedbatch ethanolic fermentation process in Saccharomyces cerevisiae, using a metabolic model as a prediction tool. Appl. Environ. Microbiol. 72: 2134–2140.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung-Hwan Jung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seo, HB., Yeon, JH., Jeong, M.H. et al. Aeration alleviates ethanol inhibition and glycerol production during fed-batch ethanol fermentation. Biotechnol Bioproc E 14, 599–605 (2009). https://doi.org/10.1007/s12257-009-0066-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-009-0066-3

Keywords

Navigation