Skip to main content
Log in

High-level production of ethanol during fed-batch ethanol fermentation with a controlled aeration rate and non-sterile glucose powder feeding of Saccharomyces cerevisiae

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

In this study, we utilized a unique strategy for fed-batch fermentation using ethanol-tolerant Saccharomyces cerevisiae to achieve a high-level of ethanol production that could be practically applied on an industrial scale. During this study, the aeration rate was controlled at 0.0, 0.13, 0.33, and 0.8 vvm to determine the optimal aeration conditions for the production of ethanol. Additionally, non-sterile glucose powder was fed during fed-batch ethanol fermentation and corn-steep liquor (CSL) in the medium was used as an organic N-source. When aeration was conducted, the ethanol production and productivity were superior to that when aeration was not conducted. Specifically, the maximum ethanol production reached approximately 160 g/L, when the fermentor was aerated at 0.13 vvm. These findings indicate that the use of a much less expensive C-source may enable the fermentation process to be directed towards the improvement of overall ethanol production and productivity in fermentors that are aerated at 0.13 vvm. Furthermore, if a repeated fed-batch process in which the withdrawal and fill is conducted prior to 36 h can be employed, aeration at a rate of 0.33 and/or 0.8 vvm may improve the overall ethanol productivity

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Demirbas, A. (2007) Progress and recent trends in biofuels. Prog. Energy Combust. Sci. 33: 1–18.

    Article  CAS  Google Scholar 

  2. Hamelinck, C. N., G. van Hooijdonk, and A. P. C. Faaij (2005) Ethanol from lignocellulosic biomass: technoeconomic performance in short-, middle-, and long-term. Biomass Bioenergy 28: 384–410.

    Article  CAS  Google Scholar 

  3. Sánchez, Ó. J. and C. A. Cardona (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour. Technol. 99: 5270–5295.

    Article  Google Scholar 

  4. Cardona, C. A. and Ó. J. Sánchez (2007) Fuel ethanol production: process design trends and integration opportunities. Bioresour. Technol. 98: 2415–2457.

    Article  CAS  Google Scholar 

  5. Alfenore, S., C. Molina-Jouve, S. E. Guillouet, J.-L. Uribelarrea, G. Goma, and L. Benbadis (2002) Improving ethanol production and viability of Saccharomyces cerevisiae by a vitamin feeding strategy during fed-batch process. Appl. Microbiol. Biotechnol. 60: 67–72.

    Article  CAS  Google Scholar 

  6. Alfenor, S., X. Cameleyre, L. Benbadis, C. Bideaux, J.-L. Uribelarrea, G. Goma, C. Molina-Jouve, and S. E. Guillouet (2004) Aeration strategy: a need for very high ethanol performance in Saccharomyces cerevisiae fed-batch process. Appl. Microbiol. Biotechnol. 63: 537–542.

    Article  Google Scholar 

  7. Cot, M., M. O. Loret, J. François, and L. Benbadis (2007) Physiological behaviour of Saccharomyces cerevisiae in aerated fed-batch fermentation for high level production of bioethanol. FEMS Yeast Res. 7: 22–32.

    Article  CAS  Google Scholar 

  8. Cardoso, H. and C. Leão (1992) Sequential inactivation of ammonium and glucose transport in Saccharomyces cerevisiae during fermentation. FEMS. Microbiol. Lett. 73: 155–159.

    Article  CAS  Google Scholar 

  9. Gray, J. V., G. A. Petsko, G. C. Johnston, D. Ringe, R. A. Singer, and M. Werner-Washburn (2004) Sleeping beauty: quiescence in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 68: 187–206.

    Article  CAS  Google Scholar 

  10. Herman, P. K. (2002) Stationary phase in yeast. Curr. Opin. Microbiol. 5: 602–607.

    Article  CAS  Google Scholar 

  11. Leão, C. and N. van Uden (1982) Effects of ethanol and other alkanols on the glucose transport system of Saccharomyces cerevisiae. Biotechnol. Bioeng. 24: 2601–2604.

    Article  Google Scholar 

  12. Leão, C. and N. van Uden (1984) Effects of ethanol and other alkanols on passive proton influx in the yeast Saccharomyces cerevisiae. Biochim. Biophys. Acta 774: 43–48.

    Article  Google Scholar 

  13. Jung, K. -H. (2008) Enhanced enzyme activities of inclusion bodies of recombinant β-galactosidase via the addition of inducer analog after L-arabinose induction in the araBAD promoter system of Escherichia coli. J. Microbiol. Biotechnol. 18: 434–442.

    CAS  Google Scholar 

  14. Jung, K. -H., J. -H. Yeon, S. -K. Moon, and J. H. Choi (2008) Methyl α-D-glucopyranoside enhances the enzymatic activity of recombinant β-galactosidase inclusion bodies in the araBAD promoter system of Escherichia coli. J. Ind. Microbiol. Biotechnol. 35: 695–701.

    Article  CAS  Google Scholar 

  15. Chaplin, M. F. and J. F. Kennedy (1986) Carbohydrate analysis: A practical approach. p. 3. IRL Press, Oxford, UK.

    Google Scholar 

  16. Shuler, M. L. and F. Kargi (2002) Bioprocess engineering, Basic concepts. 2nd ed., pp. 292–297. Prentice-Hall Inc., NJ, USA.

    Google Scholar 

  17. Bafrncona, P., D. Smogrovicova, I. Slavikova, J. Patkova, and Z. Domeny (1999) Improvement of very high gravity ethanol fermentation by media supplementation using Saccharomyces cerevisiae. Biotechnol. Lett. 21: 337–341.

    Article  Google Scholar 

  18. Casey, G. P., C. A. Magnus, and W. M. Ingledew (1983) High-gravity brewing: nutrient enhanced production of high concentrations of ethanol by brewing yeast. Biotechnol. Lett. 5: 429–434.

    Article  CAS  Google Scholar 

  19. Chen, L. J., Y. L. Xu, F. W. Bai, W. A. Anderson, and M. Moo-Young (2005) Observed quasi-steady kinetics of yeast cell growth and ethanol formation under very high gravity fermentation condition. Biotechnol. Bioprocess Eng. 10: 115–121.

    Article  CAS  Google Scholar 

  20. Jones, A. M. and W. M. Ingledew (1994) Fuel ethanol production: appraisal of nitrogeneous yeast foods for very high gravity wheat mash fermentation. Proc. Biochem. 29: 483–488.

    Article  CAS  Google Scholar 

  21. Thomas, K. C., S. H. Hynes, A. M. Jones, and W. M. Ingledew (1993) Production of fuel alcohol from wheat by VHG technology. Appl. Biochem. Biotechnol. 43: 211–226.

    Article  CAS  Google Scholar 

  22. Thomas, K. C. and W. M. Ingledew (1992) Production of 21% (v/v) ethanol by fermentation of very high gravity (VHG) wheat mashes. J. Ind. Microbiol. 10: 61–68.

    Article  CAS  Google Scholar 

  23. Jeon, B. Y., S. J. Kim, D. H. Kim, B. K. Na, D. H. Park, H. T. Tran, R. Zhang, and D. H. Ahn (2007) Development of a serial bioreactor system for direct ethanol production from starch using Aspergillus niger and Saccharomyces cerevisiae. Biotechnol. Bioprocess Eng. 12: 566–573.

    Article  CAS  Google Scholar 

  24. Choi, G. Wook., H. W. Kang, Y. R. Kim, and B. W. Chung (2008) Ethanol production by Zymomonas mobilis CHZ2501 from industrial starch feedstocks. Biotechnol. Bioprocess Eng. 13: 765–771.

    Article  CAS  Google Scholar 

  25. Atkinson, B. and F. Mavituna (1983) Biochemical engineering and biotechnology handbook. pp. 772–773. The nature press, London, UK.

    Google Scholar 

  26. Bai, F. W., L. J. Chen, W. A. Anderson, and M. Moo-Young (2004) Parameter oscillations in very high gravity medium continuous ethanol fermentation and their attenuation on multi-stage packed column bioreactor system. Biotechnol. Bioeng. 88: 558–566.

    Article  CAS  Google Scholar 

  27. Bai, F. W., L. J. Chen, Z. Zhang, W. A. Anderson, and M. Moo-Young (2004) Continuous ethanol production and evaluation of yeast cell lysis and viability loss under very high gravity medium conditions. J. Biotechnol. 110: 287–293.

    Article  CAS  Google Scholar 

  28. Hayashida, S. and K. Ohta (1981) Formation of high concentrations of alcohol by various yeasts. J. Inst. Brew. 87: 42–44.

    CAS  Google Scholar 

  29. Krishnan, M. S., Y. Xia, G. T. Tsao, N. Kasthurikrishnan, N. Srinivasan, and R. G. Cook (1995) Process engineering of high-ethanol-tolerance yeast for the manufacture of ethanol. Appl. Biochem. Biotechnol. 51/52: 479–493.

    Article  CAS  Google Scholar 

  30. Mota, M., J. M. Besie, P. Strehaiano, and G. Goma (1987) A simple device for fed-batch control in alcoholic fermentation. Biotechnol. Bioeng. 24: 775–777.

    Article  Google Scholar 

  31. Thomas, K. C., S. H. Hynes, A. M. Jones, and W. M. Ingledew (1993) Production of fuel alcohol from wheat by VHG technology. Appl. Biochem. Biotechnol. 43: 211–226.

    Article  CAS  Google Scholar 

  32. Thomas, K. C. and W. M. Ingledew (1990) Fuel alcohol production: effects of free amino nitrogen on fermentation of very-high-gravity wheat mash. Appl. Environ. Microbiol. 56: 2046–2050.

    CAS  Google Scholar 

  33. Wang, S., K. C. Thomas, K. Sosulski, and W. M. Ingledew (1999) Grain pearling and very high gravity (VHG) fermentation technologies for fuel alcohol production from rye and triticale. Process Biochem. 34: 421–428.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung-Hwan Jung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seo, HB., Kim, S.S., Lee, HY. et al. High-level production of ethanol during fed-batch ethanol fermentation with a controlled aeration rate and non-sterile glucose powder feeding of Saccharomyces cerevisiae . Biotechnol Bioproc E 14, 591–598 (2009). https://doi.org/10.1007/s12257-008-0274-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-008-0274-2

keywords

Navigation