Skip to main content
Log in

Optimization of culture condition for the production of D-amino acid oxidase in a recombinant Escherichia coli

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The gene encoding D-amino acid oxidase (DAAO) from Trigonopsis variabilis CBS 4095 has been cloned and expressed in Escherichia coli BL21 (DE3). Unfortunately, it was observed that the host cell was negatively affected by the expressed DAAO, resulting in a remarkable decrease in cell growth. To overcome this problem, we investigated several factors that affect cell growth rate and DAAO production such as addition time of inducer and dissolved oxygen (DO) concentration. The addition time of lactose, which was used as an inducer, and DO concentration appeared to be critical for the cell growth of E. coli BL21 (DE3)/pET-DAAO. A two-stage DO control strategy was developed, in which the DO concentration was controlled above 50% until specific stage of bacterial growth (OD600 30–40) and then downshifted to 30% by changing the agitation speed and aeration rate, and they remained at these rates until the end of fermentation. With this strategy, the maximum DAAO activity and cell growth reached 18.5 U/mL and OD600 81, respectively. By reproducing these optimized conditions in a 12-m3 fermentor, we were able to produce DAAO at a productivity of 19 U/mL with a cell growth of OD600 80.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pilone, M. S. (2000) D-Amino acid oxidase: new findings. Cell. Mol. Life Sci. 57: 1732–1747.

    Article  CAS  Google Scholar 

  2. Sacchi, S., L. Pollegioni, M. S. Pilone, and C. Rossetti (1998) Determination of D-amino acids using a D-amino acid oxidase biosensor with spectrophotometric and potentiometric detection. Biotechnol. Tech. 12: 149–153.

    Article  CAS  Google Scholar 

  3. Cooper, A. J. L., J. Z. Ginos, and A. Meister (1983) Synthesis and properties of the α-keto acids. Chem. Rev. 83: 321–358.

    Article  CAS  Google Scholar 

  4. Brodelius, P., B. Hägerdal, and K. Mosbach (1980) Immobilized whole cells of the yeast Trigonopsis variabilis containing D-amino acid oxidase for the production of α-keto acids. Vol. 5. pp. 383–387. In: H. H. Weetal and G. P. Roger (eds.). Enzyme Engineering. Plenum, New York, NY, USA.

    Google Scholar 

  5. Luo, H., Q. Li, H. Yu, and Z. Shen (2004) Construction and application of fusion proteins of D-amino acid oxidase and glutaryl-7-aminocephalosporanic acid acylase for direct bioconversion of cephalosporin C to 7-aminocephalosporanic acid. Biotechnol. Lett. 26: 939–945.

    Article  CAS  Google Scholar 

  6. Conlon, H. D., J. Bagai, K. Baker, Y. Q. Shen, B. L. Wong, R. Noiles, and C. W. Rausch (1995) Two-step immobilized enzyme conversion of cephalosporin C to 7-aminocephalosporanic acid. Biotechnol. Bioeng. 46: 510–513.

    Article  CAS  Google Scholar 

  7. Pilone, M. S., S. Buto, and L. Pollegioni (1995) A process for bioconversion of cephalosporin C by Rhodotorula gracilis D-amino acid oxidase. Biotechnol. Lett. 17: 199–204.

    Article  CAS  Google Scholar 

  8. Szwajcer, D. E., S. Flygare, and K. Mosbach (1991) Stabilization of D-amino acid oxidase from yeast Trigonopsis variabilis used for production of glutaryl-7-aminocephalosporanic acid from cephalosporin C. Appl. Biochem. Biotechnol. 27: 239–250.

    Google Scholar 

  9. Chen, J. T., S. Y. Lin, and H. Tsai (1991) Enzymic and chemical conversions of cephalosporin C to 7-(glut-arylamido)cephalosporanic acid. J. Biotechnol. 19: 203–210.

    Article  CAS  Google Scholar 

  10. Matsuda, A., K. Matsuyama, K. Yamamoto, S. Ichikawa, and K. I. Komatsu (1987) Cloning and characterization of the genes for two distinct cephalosporin acylases from a Pseudomonas strain. J. Bacteriol. 169: 5815–5820.

    CAS  Google Scholar 

  11. Tsuzuki, K., K. Komatsu, S. Ichikawa, and Y. Shibuya (1989) Enzymatic synthesis of 7-aminocephalosporanic acid. Nippon Nogeikagaku Kaishi 63: 1847–1853.

    CAS  Google Scholar 

  12. Volkert, M. R., P. C. Loewen, J. Switala, D. Crowley, and M. Conley (1994) The Δ (argF-lacZ) 205 (U169) deletion greatly enhances resistance to hydrogen peroxide in stationary-phase Escherichia coli. J. Bacteriol. 176: 1297–1302.

    CAS  Google Scholar 

  13. Pollegioni, L., L. Caldinelli, G. Molla, S. Sacchi, and M. S. Pilone (2004) Catalytic properties of D-amino acid oxidase in cephalosporin C bioconversion: a comparison between proteins from different sources. Biotechnol. Prog. 20: 467–473.

    Article  CAS  Google Scholar 

  14. Golini, P., D. Bianchi, E. Battistel, P. Cesti, and R. Tessinari (1995) Immobilization of D-amino acid oxidase from different yeast: characterization and application in the deamination of cephalosporin C. Enzyme Microb. Technol. 17: 324–329.

    Article  CAS  Google Scholar 

  15. Huber, F. M., J. T. Vicenzi, and A. J. Tietz (1992) High-yielding culture conditions for the biosynthesis of D-amino acid oxidase by Trigonopsis variabilis. Biotechnol. Lett. 14: 195–200.

    Article  CAS  Google Scholar 

  16. Tishkov, V. I. and S. V. Khoronenkova (2005) D-amino acid oxidase: structure, catalytic mechanism, and practical application. Biochemistry (Mosc). 70: 40–54.

    CAS  Google Scholar 

  17. Pilone, M. S., L. D’Anguiro, L. Pollegioni, and S. Buto (1994) Evaluation of D-amino acid oxidase from Rhodotorula gracilis for the production of α-keto acids: a reactor system. Biotechnol. Bioeng. 44:1288–1294.

    Article  Google Scholar 

  18. Pollegioni, L. and M. S. Pilone (1992) Purification of Rhodotorula gracilis D-amino acid oxidase. Protein Expr. Purif. 3: 165–167.

    CAS  Google Scholar 

  19. Dib, I., D. Stanzer, and B. Nidetzky (2007) Trigonopsis variabilis D-Amino acid oxidase: control of protein quality and opportunities for biocatalysis through production in Escherichia coli. Appl. Environ. Microbiol. 73:331–333.

    Article  CAS  Google Scholar 

  20. Riethorst, W. and A. Reichert (1999) An industrial view on enzymes for the cleavage of cephalosporin C. Chimia. 53: 600–607.

    CAS  Google Scholar 

  21. Alonso, J., J. L. Barredo, P. Armisén, B. Díez, F. Salto, J. M. Guisan, J. L. GarcÍa, and E. Cortés (1999) Engineering the D-amino acid oxidase from Trigonopsis variabilis to facilitate its overproduction in Escherichia coli and its downstream processing by tailor-made metal chelate supports. Enzyme Microb. Technol. 25: 88–95.

    Article  CAS  Google Scholar 

  22. Lin, L. L., H. R. Chien, W. C. Wang, T. S. Hwang, H. M. Fu, and W. H. Hsu (2000) Expression of Trigonopsis variabilis D-amino acid oxidase gene in Escherichia coli and characterization of its inactive mutants. Enzyme Microb. Technol. 27: 482–491.

    Article  CAS  Google Scholar 

  23. Hwang, T. S., H. M. Fu, L. L. Lin, and W. H. Hsu (2000) High-level expression of Trigonopsis variabilis D-amino acid oxidase in Escherichia coli using lactose as inducer. Biotechnol. Lett. 22: 655–658.

    Article  CAS  Google Scholar 

  24. Sambrook, J. D. and W. Russel (2001) Molecular Cloning: A Laboratory Manual. 3nd ed. Cold Spring Harbor Laboratory Press, USA.

    Google Scholar 

  25. Szwajcer, D. E., J. R. Miller, S. Kovacevic, and K. Mosbach (1990) Characterization of D-amino acid oxidase with high activity against cephalosporin C from the yeast Trigonopsis variabilis. Biochem. Int. 20: 1169–1178.

    Google Scholar 

  26. Donovan, R. S., C. W. Robinson,and B. R. Glick (1996) Optimizing inducer and culture conditions for expression of foreign proteins under the control of the lac promoter. J. Ind. Microbiol. 16: 145–154.

    Article  CAS  Google Scholar 

  27. Kim, J. E., E. J. Kim, W. J. Rhee, and T. H. Park (2005) Enhanced production of recombinant protein in Escherichia coli using silkworm Hemolymph. Biotechnol. Bioprocess Eng. 10: 353–356.

    Article  CAS  Google Scholar 

  28. Yoon, S. H., C. Li, Y. M. Lee, S. H. Lee, S. H. Kim, M. S. Choi, W. T. Seo, J. K. Yang, J. Y. Kim, and S. W. Kim (2005) Production of vanillin from ferulic acid using recombinant strains of Escherichia coli. Biotechnol. Bioprocess Eng. 10: 378–384.

    CAS  Google Scholar 

  29. Shin, E. J., S. L. Park, S. J. Jeon, J. W. Lee, Y. T. Kim, Y. H. Kim, and S. W. Nam (2006) Effect of molecular chaperones on the soluble expression of alginate lyase in E. coli. Biotechnol. Bioprocess Eng. 11: 414–419.

    CAS  Google Scholar 

  30. Lee, K. W., H. D. Shin, and Y. H. Lee (2002) Extracellular overproduction of β-cyclodextrin glucanotransferase in a recombinant E. coli using secretive expression system. J. Microbiol. Biotechnol. 12: 753–759.

    Google Scholar 

  31. Son, Y. J., K. H. Park, S. Y. Lee, S. J. Oh, C. K. Kim, B. T. Choi, Y. C. Park, and J. H. Seo (2007) Effects of temperature shift strategies on human preproinsulin production in the fed-batch fermentation of recombinant Escherichia coli. Biotechnol. Bioprocess Eng. 12: 556–561.

    CAS  Google Scholar 

  32. Lan, J. C., T. C. Ling, G. Hamilton, and A. Lyddiatt (2006) A fermentation strategy for anti-MUC1 C595 diabody expression in recombinant Escherichia coli. Biotechnol. Bioprocess Eng. 11: 425–431.

    CAS  Google Scholar 

  33. Kim, M. D., W. J. Lee, K. H. Park, K. H. Rhee, and J. H. Seo (2002) Two-step fed-batch culture of recombinant Escherichia coli for production of Bacillus licheniformis maltogenic amylase. J. Microbiol. Biotechnol. 12: 273–278.

    CAS  Google Scholar 

  34. Shiloach, J. and R. Fass (2005) Growing E. coli to high cell density-a historical perspective on method development. Biotechnol. Adv. 23: 345–357.

    Article  CAS  Google Scholar 

  35. Makrides, S. C. (1996) Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol. Rev. 60: 512–538.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chan-Wha Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, SJ., Kim, NJ., Shin, CH. et al. Optimization of culture condition for the production of D-amino acid oxidase in a recombinant Escherichia coli . Biotechnol Bioproc E 13, 144–149 (2008). https://doi.org/10.1007/s12257-008-0005-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-008-0005-8

Keywords

Navigation