Skip to main content
Log in

Mechanical behavior of a new biphasic calcium phosphate bone graft

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The aim of this study was to create a new porous calcium phosphate implant for use as a synthetic bone graft substitute. Porous bioceramic was fabricated using a foam-casting method. By using polyurethane foam and a slurry containing hydroxyapatite-dicalcium phosphate powder, water, and additives, a highly porous structure (66 ± 5%) was created. The porous specimens possess an elastic modulus of 330 ± 32 MPa and a compressive strength of 10.3 ± 1.7 MPa. The X-ray diffraction patterns show hydroxyapatite and beta-pyrophosphate phases after sintering. A rabbit model was developed to evaluate the compressive strength and elastic modulus of cancellous bone defects treated with these porous synthetic implants. The compressive mechanical properties became weaker until the second month post implantation. After the second month, these properties increased slightly and remained higher than control values. New bone formed on the outside surface and on the macropore walls of the specimens, as osteoids and osteoclasts were evident two months postoperatively. Considering these properties, these synthetic porous calcium phosphate implants could be applicable as cancellous bone substitutes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ravaglioli, A. and A. Krajewski (1992) Bioceramics: Materials, Properties, Applications. pp. 56–63. Chapman and Hall, London, UK.

    Google Scholar 

  2. Hench, L. L. and J. Wilson (1993) An Introduction to Bioceramics. pp. 245–251. World Scientific Publishing Co., Singapore.

    Google Scholar 

  3. Oonishi, H. (1998) Degardation/resorption in bioactive ceramics in orthopedics. pp. 406–419. In: J. Black (ed.). Handbook of Biomaterial Properties. Chapman and Hall, London, UK.

    Google Scholar 

  4. Black, J. (1988) Ceramics and Composites; Orthopaedic Biomaterials in Research and Practice. pp. 191–211. Churchill Livingstone Inc., New York, NY, USA.

    Google Scholar 

  5. Raynaud, S., E. Champion, D. Bernache-Assollant, and P. Thomas (2002) Calcium phosphate apatites with variable Ca/P atomic ratio I. Synthesis, characterisation and thermal stability of powders. Biomaterials 23: 1065–1072.

    Article  CAS  Google Scholar 

  6. Lu, X. and Y. Leng (2005) Theoretical analysis of calcium phosphate precipitation in simulated body fluid. Biomaterials 26: 1097–1108.

    Article  CAS  Google Scholar 

  7. Cuneyt Tas, A., F. Korkusuz, M. Timucin, and N. Akkas (1997) An investigation of the chemical synthesis and high-temperature sintering behaviour of calcium hydroxyapatite (HA) and tricalcium phosphate (TCP) bioceramics. J. Mater. Sci. Mater. Med. 8: 91–96.

    Article  CAS  Google Scholar 

  8. Jarcho, M. (1981) Calcium phosphate ceramics as hard tissue prosthetics. Clin. Orthop. Relat. Res. 157: 259–278.

    CAS  Google Scholar 

  9. Klein, C. P. A. T., A. A. Driessen, and K. de Groot (1984) Relationship between the degradation behaviour of calcium phosphate ceramics and their physical-chemical characteristics and ultrastructural geometry. Biomaterials 5: 157–160.

    Article  CAS  Google Scholar 

  10. Hollinger, J. O., J. Brekke, E. Gruskin, and D. Lee (1996) Role of bone substitutes. Clin. Orthop. Relat. Res. 324: 55–65.

    Article  Google Scholar 

  11. Yamaguchi, K., T. Hirano, G. Yoshida, and K. Iwasaki (1995) Degradation-resistant character of synthetic hydroxyapatite blocks filled in bone defects. Biomaterials 16: 983–985.

    Article  CAS  Google Scholar 

  12. Walters, M. A., Y. C. Leung, N. C. Blumenthal, R. Z. LeGeros, and K. A. Konsker (1990) A Raman and infrared spectroscopic investigation of biological hydroxyapatite. J. Inorg. Biochem. 39: 193–200.

    Article  CAS  Google Scholar 

  13. Mastrogiacomo, M., S. Scaglione, R. Martinetti, L. Dolcini, F. Beltrame, R. Cancedda, and R. Quarto (2006) Role of scaffold internal structure on in vivo bone formation in macroporous calcium phosphate bioceramics. Biomaterials 27: 3230–3237.

    Article  CAS  Google Scholar 

  14. Stubbs, D., M. Deakin, P. Chapman-Sheath, W. Bruce, J. Debes, R. M. Gillies, and W. R. Walsh (2004) In vivo evaluation of resorbable bone graft substitutes in a rabbit tibial defect model. Biomaterials 25: 5037–5044.

    Article  CAS  Google Scholar 

  15. Chu, T. M. G., D. G. Orton, S. J. Hollister, S. E. Feinberg, and J. W. Halloran (2002) Mechanical and in vivo performance of hydroxyapatite implants with controlled architectures. Biomaterials 23: 1283–1293.

    Article  CAS  Google Scholar 

  16. Klein, C. P., H. van der Lubbe, A. A. Driessen, K. de Groot, and A. van den Hoof (1983) Biodegradation behavior of various calcium phosphate materials in subcutaneous tissue. pp. 356–368. In: P. Vincenzini (ed.). Ceramics in Surgery. Elsevier, Amsterdam, The Netherlands.

    Google Scholar 

  17. Vallet-Regi, M. and J. M. Gonzalez-Calbet (2004) Calcium phosphates as substitution of bone tissues. Prog. Solid State Chem. 32: 1–31.

    Article  CAS  Google Scholar 

  18. Hing, K. A., S. M. Best, and W. Bonfield (1999) Characterization of porous hydroxyapatite. J. Mater. Sci. Mater. Med. 10: 135–145.

    Article  CAS  Google Scholar 

  19. Boyde, A., A. Corsi, R. Quarto, R. Cancedda, and P. Bianco (1999) Osteoconduction in large macroporous hydroxyapatite ceramic implants: evidence for a complementary integration and disintegration mechanism. Bone 24: 579–589.

    Article  CAS  Google Scholar 

  20. Raynaud, S., E. Champion, and D. Bernache-Assollant (2002) Calcium phosphate apatites with variable Ca/P atomic ratio II. Calcination and sintering. Biomaterials 23: 1073–1080.

    Article  CAS  Google Scholar 

  21. Bohner, M., G. H. van Lenthe, S. Grunenfelder, W. Hirsiger, R. Evison, and R. Muller (2005) Synthesis and characterization of porous β-tricalcium phosphate blocks. Biomaterials 26: 6099–6105.

    Article  CAS  Google Scholar 

  22. Bian, J. J., D. W. Kim, and K. S. Hong (2004) Phase transformation and sintering behavior of Ca2P2O7. Mater. Lett. 58: 347–351.

    Article  CAS  Google Scholar 

  23. Xin, R., Y. Leng, J. Chen, and Q. Zhang (2005) A comparative study of calcium phosphate formation on bioceramics in vitro and in vivo. Biomaterials 26: 6477–6486.

    Article  CAS  Google Scholar 

  24. Orr, T. E., P. A. Villars, S. L. Mitchell, H. P. Hsu, and M. Spector (2001) Compressive properties of cancellous bone defects in a rabbit model treated with particles of natural bone mineral and synthetic hydroxyapatite. Biomaterials 22: 1953–1959.

    Article  CAS  Google Scholar 

  25. Specchia, N., A. Pagnotta, M. Cappella, A. Tampieri, and F. Greco (2002) Effect of hydroxyapatite porosity on growth and differentiation of human osteoblast-like cells. J. Mater. Sci. 37: 577–584.

    Article  CAS  Google Scholar 

  26. Zhang, X. D., J. M. Zhou, W. Q. Chen, C. Wu, and P. Zhou (1992) A calcium phosphate, bioceramics with osteoinduction. The 4th World Biomaterials Congress. April 24–28. Berlin, Germany.

  27. Wang, J., W. Chen, Y. Li, S. Fan, J. Weng, and X. Zhang (1998) Biological evaluation of biphasic calcium phosphate ceramic vertebral laminae. Biomaterials 19: 1387–1392.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Rabiee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rabiee, S.M., Mortazavi, S.M.J., Moztarzadeh, F. et al. Mechanical behavior of a new biphasic calcium phosphate bone graft. Biotechnol Bioproc E 13, 204–209 (2008). https://doi.org/10.1007/s12257-007-0163-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-007-0163-0

Keywords

Navigation