Skip to main content
Log in

Optimization of human interferon gamma production in Escherichia coli by response surface methodology

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The production of human interferon gamma (hIFN-γ) using a synthetic gene in Escherichia coli BL21-SI was optimized by response surface methodology (RSM) and a Box-Behnken design. The process variables studied were temperature, bio-mass concentration at induction time and the NaCl concentration as inducer. According to the Box-Behnken design, a second order response function was developed. The optimal expression conditions were a temperature of 32.6°C, induction biomass of 0.31 g/L and 0.3 M NaCl in minimal medium. The model prediction for the maximum hIFN-γ production was 77.3 mg/L, which corresponded satisfactorily with the experimental data. The hIFN-γ concentration attained under optimized conditions was 13-times higher than that obtained using the non-optimized conditions. We conclude that RSM is an effective method for the optimization of recombinant protein expression using synthetic genes in E. coli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Khalilzadeh, R., S. A. Shojaosadati, A. Bahrami, and N. Maghsoudi (2003) Over-expression of recombinant human interferon-gamma in high cell density fermentation of Escherichia coli. Biotechnol. Lett. 25: 1989–1992.

    Article  CAS  Google Scholar 

  2. Schroder, K., P. J. Hertzog, T. Ravasi, and D. A. Hume (2004) Interferon-γ: an overview of signals, mechanisms and functions. J. Leukoc. Biol. 75: 163–189.

    Article  CAS  Google Scholar 

  3. Whiteside, T. L. (2005) IFN-γ: Detection and prevention of release. Curr. Med. Chem. Anti Inflamm. Anti Allergy Agents. 4: 121–131.

    Article  CAS  Google Scholar 

  4. Makrides, S. C. (1996) Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol. Rev. 60: 512–538.

    CAS  Google Scholar 

  5. Swartz, J. R. (2001) Advances in Escherichia coli production of therapeutic proteins. Curr. Opin. Biotechnol. 12: 195–201.

    Article  CAS  Google Scholar 

  6. Schmidt, F. R. (2004) Recombinant expression systems in the pharmaceutical industry. Appl. Microbiol. Biotechnol. 65: 363–372.

    Article  CAS  Google Scholar 

  7. Studier, F. W. (2005) Protein production by auto-induction in high density shaking cultures. Protein Expr. Purif. 41: 207–234.

    Article  CAS  Google Scholar 

  8. Hannig, G. and S. C. Makrides (1998) Strategies for optimizing heterologous protein expression in Escherichia coli. Trends Biotechnol. 16: 54–60.

    Article  CAS  Google Scholar 

  9. Jana, S. and J. K. Deb (2005) Strategies for efficient production of heterologous proteins in Escherichia coli. Appl. Microbiol. Biotechnol. 67: 289–298.

    Article  CAS  Google Scholar 

  10. Wu, G., N. Bashir-Bello, and S. J. Freeland (2006) The synthetic gene designer: A flexible web platform to explore sequence manipulation for heterologous expression. Protein Expr. Purif. 47: 441–445.

    Article  CAS  Google Scholar 

  11. Nikerel, I. E., E. Toksoy, B. Kirdar, and R. Yildirim (2005) Optimizing medium composition for TaqI endonuclease production by recombinant Escherichia coli cells using response surface methodology. Process Biochem. 40: 1633–1639.

    Article  CAS  Google Scholar 

  12. Zheng, S., K. Friehs, N. He, X. Deng, Q. Li, Z. He, C. Xu, and Y. Lu (2007) Optimization of medium of components for plasmid production by recombinant E. coli DH5α pUK21CMVβ1.2. Biotechnol. Bioprocess Eng. 12: 213–221.

    Article  CAS  Google Scholar 

  13. Bird, P. I., S. C. Pak, D. M. Worrall, and S. P. Bottomley (2004) Production of recombinant serpins in Escherichia coli. Methods 32: 169–176.

    Article  CAS  Google Scholar 

  14. Ma, X., W. Zheng, T. Wang, D. Wei, and Y. Ma (2006) Optimization and high-level expression of a functional GST-tagged rHLT-B in Escherichia coli and GM1 binding ability of purified rHLT-B. J. Microbiol. 44: 293–300.

    CAS  Google Scholar 

  15. Baş, D. and İ. H. Boyacy (2007) Modeling and optimization I: Usability of response surface methodology. J. Food Eng. 78:836–845.

    Article  CAS  Google Scholar 

  16. Donahue, R. A., Jr. and R. L. Bebee (1999) BL21-SI competent cells for protein expression in E. coli. Focus 21:49–51.

    Google Scholar 

  17. Box, G. E. P. and D. W. Behnken (1960) Some new three level designs for the study of quantitative variables. Technometrics 2: 455–475.

    Article  Google Scholar 

  18. Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265–275.

    CAS  Google Scholar 

  19. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Article  CAS  Google Scholar 

  20. Wada, K., Y. Wada, F. Ishibashi, T. Gojobori, and T. Ikemura (1992) Codon usage tabulated from the Gen-Bank genetic sequence data. Nucleic Acids Res. 20: S2111–S2118.

    Google Scholar 

  21. Kane, J. F. (1995) Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli. Curr. Opin. Biotechnol. 6: 494–500.

    Article  CAS  Google Scholar 

  22. Lithwick, G. and H. Margalit (2003) Hierarchy of sequence-dependent features associated with prokaryotic translation. Genome Res. 13: 2665–2673.

    Article  CAS  Google Scholar 

  23. Gustafsson, C., S. Govindarajan, and J. Minshull (2004) Codon bias and heterologous protein expression. Trends Biotechnol. 22: 346–353.

    Article  CAS  Google Scholar 

  24. Deng, T. (1997) Bacterial expression and purification of biologically active mouse c-Fos proteins by selective codon optimization. FEBS Lett. 409: 269–272.

    Article  CAS  Google Scholar 

  25. Hale, R. S. and G. Thompson (1998) Codon optimization of the gene encoding a domain from human Type 1 neurofibromin protein results in a threefold improvement in expression level in Escherichia coli. Protein Expr. Purif. 12: 185–188.

    Article  CAS  Google Scholar 

  26. Feng, L., W. W. Chan, S. L. Roderick, and D. E. Cohen (2000) High-level expression and mutagenesis of recombinant human phosphatidylcholine transfer protein using a synthetic gene: evidence for a C-terminal membrane binding domain. Biochemistry 39: 15399–15409.

    Article  CAS  Google Scholar 

  27. Li, A., Z. Kato, H. Ohnishi, K. Hashimoto, E. Matsu-kuma, K. Omoya, Y. Yamamoto, and N. Kondo (2003) Optimized gene synthesis and high expression of human interleukin-18. Protein Expr. Purif. 32: 110–118.

    Article  CAS  Google Scholar 

  28. Frelin, L., G. Ahlen, M. Alheim, O. Weiland, C. Barnfield, P. Liljestrom, and M. Sallberg (2004) Codon optimization and mRNA amplification effectively enhances the immunogenicity of the hepatitis C virus non-structural 3/4A gene. Gene Ther. 11: 522–533.

    Article  CAS  Google Scholar 

  29. Paz Maldonado, L. M. T., V. E. B. Hernandez, E. M. Rivero, A. P. Barba de ka Rosa, J. L. Flores, L. G. O. Acevedo, and A. De León (2007) Optimization of culture conditions for a synthetic gene expression in Escherichia coli using response surface methodology: The case of human interferon beta. Biomol. Eng. 24: 217–222.

    Article  CAS  Google Scholar 

  30. Niemitalo, O., A. Neubauer, U. Liebal, J. Myllyharju, A. H. Juffer, and P. Neubauer (2005) Modelling of translation of human protein disulfide isomerase in Escherichia coli-A case study of gene optimization. J. Biotechnol. 120: 11–24.

    Article  CAS  Google Scholar 

  31. Bhandari, P. and J. Gowrishankar (1997) An Escherichia coli host strain useful for efficient overproduction of cloned gene products with NaCl as the inducer. J. Bacteriol. 179: 4403–4406.

    CAS  Google Scholar 

  32. Ling, H. (2002) Physiology of Escherichia coli in batch and fed-batch cultures with special emphasis on amino acid and glucose metabolism. Doctoral thesis. Department of Biotechnology, Royal Institute of Technology, Stockholm, Sweden (http://media.lib.kth.se:8080/dis-sengrefhit.asp?dissnr=3334).

    Google Scholar 

  33. Ignatova, Z., A. Mahsunah, M. Georgieva, and V. Kasche (2003) Improvement of posttranslational bottlenecks in the production of penicillin amidase in recombinant Escherichia coli strains. Appl. Environ. Microbiol. 69: 1237–1245.

    Article  CAS  Google Scholar 

  34. Neubauer, P., K. Hofmann, O. Holst, B. Mattiansson, and P. Kruschke (1992) Maximizing the expression of a recombinant gene in Escherichia coli by manipulation of induction time using lactose as inducer. Appl. Microbiol. Biotechnol. 36: 739–744.

    Article  CAS  Google Scholar 

  35. Donovan, R. S., C. W. Robinson, and B. R. Glick (1996) Optimizing inducer and culture conditions for expression of foreign proteins under the control of the lac promoter. J. Ind. Microbiol. 16: 145–154.

    Article  CAS  Google Scholar 

  36. De León, A., H. Jiménez-Islas, M. González-Cuevas, and A. P. Barba de la Rosa (2004) Analysis of the expression of the Trichoderma harzianum ech42 gene in two isogenic clones of Escherichia coli by surface response methodology. Process Biochem. 39: 2173–2178.

    Article  CAS  Google Scholar 

  37. Zhang, Z., K. T. Tong, M. Belew, T. Pettersson, and J. C. Janson (1992) Production, purification and characterization of recombinant human interferon-γ. J. Chromatogr. 604: 143–155.

    Article  CAS  Google Scholar 

  38. Dobrovolsky, V. N., O. V. Lagutin, T. V. Vinogradova, I. S. Frolova, V. P. Kuznetsov, and O. A. Larionov (1993) Human gamma-interferon expression in the mammary gland of transgenic mice. FEBS Lett. 319: 181–184.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio De León Rodríguez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balderas Hernández, V.E., Paz Maldonado, L.M.T., Medina Rivero, E. et al. Optimization of human interferon gamma production in Escherichia coli by response surface methodology. Biotechnol Bioproc E 13, 7–13 (2008). https://doi.org/10.1007/s12257-007-0126-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-007-0126-5

Keywords

Navigation