Skip to main content
Log in

Development of a pilot-scale bacterial fermentation for plasmid-based biopharmaceutical production using a stoichiometric medium

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The recognition of the potential efficacy of plasmid DNA (pDNA) molecules as vectors in the treatment and prevention of emerging diseases has birthed the confidence to combat global pandemics. This is due to the close-to-zero safety concern associated with pDNA vectors compared to viral vectors in cell transfection and targeting. Considerable attention has been paid to the potential of pDNA vectors but comparatively less thought has been given to the practical challenges in producing large quantities to meet current rising demands. A pilot-scale fermentation scheme was developed by employing a stoichiometrically-designed growth medium whose exceptional plasmid yield performance was attested in a shake flask environment for pUC19 and pEGFP-N1 transformed into E. coliDH5α and E. ColiJM109, respectively. Batch fermentation of E. coliDH5α-PUC19 employing the stoichiometric medium displayed a maximum plasmid volumetric and specific yield of 62.6 mg/L and 17.1 mg/g (mg plasmid/g dry cell weight), respectively. Fed-batch fermentation of E. coliDH5α-pUC19 on a glycerol substrate demonstrated one of the highest ever reported pilot-scale plasmid specific yield of 48.98 mg/g and a volumetric yield of 0.53 g/L. The attainment of high plasmid specific yields constitutes a decrease in plasmid manufacturing cost and enhances the effectiveness of downstream processes by reducing the proportion of intracellular impurities. The effect of step-rise temperature induction was also considered to maximize CoIE1-origin plasmid replication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Institute of Medicine (2004) Forum on Microbial Threats, Board on Global Health. The Threat of Pandemic Influenza: Are We Ready? US National Academy of Sciences, Washington, DC, USA.

    Google Scholar 

  2. Wahlberg, D. and C. Seabrook (2004) Flu vaccine production system shaky. New York Times Syndicate. October 10.

  3. Robinson, H. L., L. A. Hunt, and R. G. Webster (1993) Protection against a lethal influenza virus challenge by immunization with a haemagglutinin-expressing plasmid DNA. Vaccine 11: 957–960.

    Article  CAS  Google Scholar 

  4. Hahn, U. K. R. Boehm, and W. Beyer (2006) DNA vaccination against anthrax in mice-combination of anti-spore and anti-toxin components. Vaccine 24: 4569–4571.

    Article  CAS  Google Scholar 

  5. Galloway, D. R. and L. Baillie (2004) DNA vaccines against anthrax. Expert Opin. Biol. Ther. 4: 1661-1667.

    Google Scholar 

  6. Ferrari, M. E., G. Hermanson, and A. Rolland (2004) Development of anthrax DNA vaccines. Curr. Opin. Mol. Ther. 6: 506–512.

    CAS  Google Scholar 

  7. Doolan, D. L. and S. L. Hoffman (2002) Nucleic acid vaccines against malaria. Chem. Immunol. 80: 308–321.

    CAS  Google Scholar 

  8. Ivory, C. and K. Chadee (2004) DNA vaccines: designing strategies against parasitic infections. Genet. Vaccines Ther. 2: 17.

    Article  CAS  Google Scholar 

  9. Gurunathan, S., D. M. Klinman, and R. A. Seder (2000) DNA vaccines: immunology, application, and optimization. Annu. Rev. Immunol. 18: 927–974.

    Article  CAS  Google Scholar 

  10. Liu, M. A. and J. B. Ulmer (2005) Human clinical trials of plasmid DNA vaccines. Adv. Genet. 55: 25–40.

    Article  CAS  Google Scholar 

  11. Sedegah, M., W. O. Rogers, A. Belmonte, M. Belmonte, G. Banania, N. Patterson, M. Ferrari, D. C. Kaslow, D. J. Carucci, T. L. Richie, and D. L. Doolan (2006) Vaxfect-in™ enhances immunogenicity and protective efficacy of P. yoelii circumsporozoite DNA vaccines. Vaccine 24: 1921–1927.

    Article  CAS  Google Scholar 

  12. MacGregor, R. R., R. Ginsberg, K. E. Ugen, Y. Baine, C. U. Kang, X. M. Tu, T. Higgins, D. B. Weiner, and J. D. Boyer (2002) T-cell responses induced in normal volunteers immunized with a DNA-based vaccine containing HIV-1 env and rev. AIDS 16: 2137–2143.

    Article  CAS  Google Scholar 

  13. United States Food and Drug Administration (1996) Points to Consider on Plasmid DNA Vaccines for Preventive Infectious Disease Indications, US Food and Drug Administration, Rockville, MD, USA.

    Google Scholar 

  14. Kelly, W. J. (2003) Perspectives on plasmid-based gene therapy: challenges for the product and the process. Biotechnol. Appl. Biochem. 37: 219–223.

    Article  CAS  Google Scholar 

  15. Stanier, R. Y., M. Doudoroff, and E. A. Adelberg (1976) The Microbial World. 3rd ed., Prentice-Hall, Englewood Cliffs, NJ, USA.

    Google Scholar 

  16. Danquah, M. K. and G. M. Forde (2007) Growth medium selection and its economic impact on plasmid DNA production. J. Biosci. Bioeng. 104: 490–497.

    Article  CAS  Google Scholar 

  17. Diogo, M. M., S. C. Ribeiro, J. A. Queiroz, G. A. Monteiro, N. Tordo, P. Perrin, and D. M. F. Prazeres (2001) Production, purification and analysis of an experimental DNA vaccine against rabies. J. Gene Med. 3: 577–584.

    Article  CAS  Google Scholar 

  18. Wong, E. M., M. A. Muesing, and B. Polisky (1982) Temperature-sensitive copy number mutants of ColE1 are located in an untranslated region of the plasmid genome. Proc. Natl. Acad. Sci. USA 79: 3570–3574.

    Article  CAS  Google Scholar 

  19. Carnes, A. E. (2005) Fermentation design for the manufacture of therapeutic plasmid DNA. BioProcess International 3: 36–44.

    CAS  Google Scholar 

  20. Prather, K. J., S. Sagar, J. Murphy, and M. Chartrain (2003) Industrial scale production of plasmid DNA for vaccine and gene therapy: plasmid design, production, and purification. Enzyme and Microb. Technol. 33: 865–883.

    Article  CAS  Google Scholar 

  21. Schmidt, T., K. Friehs, E. Flaschel, and M. Schleef (2003) Method for the isolation of CCC plasmid DNA. US Patent 6,664,078.

  22. Durland, R. H. and E. M. Eastman (1998) Manufacturing and quality control of plasmid-based gene expression systems. Adv. Drug Deliv. Rev. 30: 33–48.

    Article  CAS  Google Scholar 

  23. Lahijani, R., G. Hulley, G. Soriano, N. A. Horn, and M. Marquet (1996) High-yield production of pBR322-derived plasmids intended for human gene therapy by employing a temperature-controllable point mutation. Hum. Gene Ther. 7: 1971–1980.

    Article  CAS  Google Scholar 

  24. Wang, Z., G. Le, Y. Shi, and G. Wegrzyn (2001) Medium design for plasmid DNA production based on stoichiometric model. Process Biochem. 36: 1085–1093.

    Article  CAS  Google Scholar 

  25. O’Kennedy, R. D., J. M. Ward, and E. Keshavarz-Moore (2003) Effects of fermentation strategy on the characteristics of plasmid DNA production. Biotechnol. Appl. Biochem. 37: 83–90.

    Article  CAS  Google Scholar 

  26. Carnes, A. E., C. P. Hodgson, and J. A. Williams (2006) Inducible Escherichia coli fermentation for increased plasmid DNA production. Biotechnol. Appl. Biochem. 45: 155–166.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael K. Danquah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danquah, M.K., Forde, G.M. Development of a pilot-scale bacterial fermentation for plasmid-based biopharmaceutical production using a stoichiometric medium. Biotechnol Bioproc E 13, 158–167 (2008). https://doi.org/10.1007/s12257-007-0080-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-007-0080-2

Keywords

Navigation