Skip to main content
Log in

WNT3 and LEF1 as markers for diagnosis and survival prediction in chronic lymphocytic leukemia patients

  • original report
  • Published:
memo - Magazine of European Medical Oncology Aims and scope Submit manuscript

Summary

Background

The Wnt pathway is aberrantly activated in chronic lymphocytic leukemia (CLL) and contributes to the antiapoptotic and mitogenic characteristics of CLL cells. Lymphoid enhancer-binding factor‑1 (LEF1) acts as a mediator and key transcription factor of the Wnt/β-catenin pathway. LEF1 helps to regulate important genes involved in tumor cell death mechanisms.

Objective

To analyze the expression levels of Wnt signaling pathway member (WNT3) and its key mediator LEF1 in Egyptian CLL patients and to detect the potential use of these genes as markers of CLL outcome.

Methods

We quantified the expression levels of Wnt3 and LEF1 in peripheral blood mononuclear cells of 30 untreated CLL and 19 healthy controls by qRT-PCR (quantitative real time polymerase chain reaction).

Results

Our study demonstrated significant upregulation of both Wnt3 and LEF1 in CLL (P < 0.0001). WNT3 and LEF1 were significantly decreased in CLL patients with ECOG performance 2 and 3 than those with 0 and 1 (p = 0.023 and 0.007, respectively). CLL patients with 17p deletion express significantly low LEF1 (p = 0.033). Low levels of WNT3 and LEF1 expression indicated a shorter overall survival (P = 0.007, 0.005, respectively). The predictive power of WNT3 and LEF1 expression showed good discrimination of CLL patients from controls (AUC >0.9).

Conclusion

Upregulation of WNT3 and LEF1 could be used as helpful and specific markers to distinguish our CLL patients. Low WNT3 and LEF1 expression is associated with shortened survival in CLL patients. These results indicate that WNT3 and LEF1 represent an attractive therapeutic target for future therapies in Egyptian CLL patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Messmer BT, Messmer D, Allen SL, Kolitz JE, Kudalkar P, Cesar D, et al. In vivo measurements document the dynamic cellular kinetics of chronic lymphocytic leukemia B cells. J Clin Invest. 2005;115:755–64. https://doi.org/10.1172/JCI23409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hallek M, Information CME. Chronic lymphocytic leukemia: 2015 Update on diagnosis, risk stratification, and treatment. Am J Hematol. 2015;90:446–60. https://doi.org/10.1002/ajh.00046.

    Article  CAS  PubMed  Google Scholar 

  3. Jelinek DF, Tschumper RC, Stolovitzky GA, Iturria SJ, Tu Y, Lepre J, et al. Identification of a global gene expression signature of B‑chronic lymphocytic leukemia. Mol Cancer Res. 2003;1:346–61.

    CAS  PubMed  Google Scholar 

  4. Rosenwald A, Alizadeh AA, Widhopf G, Simon R, Davis RE, Yu X, et al. Relation of gene expression phenotype to immunoglobulin mutation genotype in B cell chronic lymphocytic leukemia. J Exp Med. 2001;194:1639–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Memarian A, Hojjat-Farsangi M, Asgarian-Omran H, Younesi V, Jeddi-Tehrani M, Sharifian RA, et al. Variation in WNT genes expression in different subtypes of chronic lymphocytic leukemia. Leuk Lymphoma. 2009;50:2061–70. https://doi.org/10.3109/10428190903331082.

    Article  CAS  PubMed  Google Scholar 

  6. Wang L, Shalek AK, Lawrence M, Ding R, Gaublomme JT, Pochet N, et al. Somatic mutation as a mechanism of Wnt/beta-catenin pathway activation in CLL. Blood. 2014;124:1089–98. https://doi.org/10.1182/blood-2014-01-552067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zenz T, Mertens D, Kuppers R, Dohner H, Stilgenbauer S. From pathogenesis to treatment of chronic lymphocytic leukaemia. Nat Rev Cancer. 2010;10:37–50. https://doi.org/10.1038/nrc2764.

    Article  CAS  PubMed  Google Scholar 

  8. Gutierrez AJ, Tschumper RC, Wu X, Shanafelt TD, Eckel-Passow J, Huddleston PM 3rd, et al. LEF‑1 is a prosurvival factor in chronic lymphocytic leukemia and is expressed in the preleukemic state of monoclonal B‑cell lymphocytosis. Blood. 2010;116:2975–83. https://doi.org/10.1182/blood-2010-02-269878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Poppova L, Janovska P, Plevova K, Radova L, Plesingerova H, Borsky M, et al. Decreased WNT3 expression in chronic lymphocytic leukaemia is a hallmark of disease progression and identifies patients with worse prognosis in the subgroup with mutated IGHV. Br J Haematol. 2016;175:851–9. https://doi.org/10.1111/bjh.14312.

    Article  CAS  PubMed  Google Scholar 

  10. MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell. 2009;17:9–26. https://doi.org/10.1016/j.devcel.2009.06.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature. 2005;434:843–50. https://doi.org/10.1038/nature03319.

    Article  CAS  PubMed  Google Scholar 

  12. Gandhirajan RK, Staib PA, Minke K, Gehrke I, Plickert G, Schlösser A, et al. Small molecule inhibitors of Wnt/beta-catenin/lef‑1 signaling induces apoptosis in chronic lymphocytic leukemia cells in vitro and in vivo. Neoplasia. 2010;12:326–35. https://doi.org/10.1593/neo.91972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Menter T, Dirnhofer S, Tzankov A. LEF1: a highly speci fi c marker for the diagnosis of chronic lymphocytic B cell leukaemia/small lymphocytic B cell lymphoma. J Clin Pathol. 2015;68(6):473–8. https://doi.org/10.1136/jclinpath-2015-202862.

    Article  CAS  PubMed  Google Scholar 

  14. Wu W, Zhu H, Fu Y, Shen W, Miao K, Hong M, et al. High LEF1 expression predicts adverse prognosis in chronic lymphocytic leukemia and may be targeted by ethacrynic acid. Oncotarget. 2016;7:21631–43. https://doi.org/10.18632/oncotarget.7795.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Skokowa J, Welte K. LEF‑1 is a decisive transcription factor in neutrophil granulopoiesis. Ann N Y Acad Sci. 2007;1106:143–51. https://doi.org/10.1196/annals.1392.012.

    Article  CAS  PubMed  Google Scholar 

  16. Reya T, O’Riordan M, Okamura R, Devaney E, Willert K, Nusse R, et al. Wnt signaling regulates B lymphocyte proliferation through a LEF‑1 dependent mechanism. Immunity. 2000;13:15–24. https://doi.org/10.1016/s1074-7613(00)00004-2.

    Article  CAS  PubMed  Google Scholar 

  17. Metzeler KH, Heilmeier B, Edmaier KE, Rawat VPS, Dufour A, Dohner K, et al. High expression of lymphoid enhancer-binding factor‑1 (LEF1) is a novel favorable prognostic factor in cytogenetically normal acute myeloid leukemia. Blood. 2012;120:2118–26. https://doi.org/10.1182/blood-2012-02-411827.

    Article  CAS  PubMed  Google Scholar 

  18. Elbaiomy MA, Aref S, El Zaafarany M, Atwa S, Akl T, El-Beshbishi W, et al. Prognostic impact of lymphoid enhancer factor 1 expression and serum Galectin.3 in Egyptian AML patients. Adv Hematol. 2019;2019:2352919. https://doi.org/10.1155/2019/2352919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Aly RM, Yousef AB. Prognostic significance of lymphoid enhancer-binding factor‑1 expression in egyptian adult B‑acute lymphocytic leukemia patients. Turk J Haematol. 2015;32:15–20. https://doi.org/10.4274/tjh.2013.0140.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kuhnl A, Gokbuget N, Kaiser M, Schlee C, Stroux A, Burmeister T, et al. Overexpression of LEF1 predicts unfavorable outcome in adult patients with B‑precursor acute lymphoblastic leukemia. Blood. 2011;118:6362–7. https://doi.org/10.1182/blood-2011-04-350850.

    Article  CAS  PubMed  Google Scholar 

  21. Gutierrez A, Sanda T, Ma W, Zhang J, Grebliunaite R, Dahlberg S, et al. Inactivation of LEF1 in T‑cell acute lymphoblastic leukemia. Blood. 2010;115:2845–51. https://doi.org/10.1182/blood-2009-07-234377.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Erdfelder F, Hertweck M, Filipovich A, Uhrmacher S, Kreuzer KA. High lymphoid enhancer-binding factor expression is associated with disease progression and poor prognosis in chronic lymphocytic leukemia. Hematol Rep. 2010;2:24–7. https://doi.org/10.4081/hr.2010.e3.

    Article  CAS  Google Scholar 

  23. Spaulding C, Reschly EJ, Zagort DE, Yashiro-Ohtani Y, Beverly LJ, Capobianco A, et al. Notch1 co-opts lymphoid enhancer factor 1 for survival of murine T‑cell lymphomas. Blood. 2007;110:2650–8. https://doi.org/10.1182/blood-2007-04-084202.

    Article  CAS  PubMed  Google Scholar 

  24. McCarthy BA, Yancopoulos S, Tipping M, Yan X‑J, Wang XP, Bennett F, et al. A seven-gene expression panel distinguishing clonal expansions of pre-leukemic and chronic lymphocytic leukemia B cells from normal B lymphocytes. Immunol Res. 2015;63:90–100. https://doi.org/10.1007/s12026-015-8688-3.

    Article  CAS  PubMed  Google Scholar 

  25. Lu D, Zhao Y, Tawatao R, Cottam HB, Sen M, Leoni LM, et al. Activation of the Wnt signaling pathway in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A. 2004;101:3118–23. https://doi.org/10.1073/pnas.0308648100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lu D, Liu JX, Endo T, Zhou H, Yao S, Willert K, et al. Ethacrynic acid exhibits selective toxicity to chronic lymphocytic leukemia cells by inhibition of the Wnt/β-catenin pathway. PLoS One. 2009;4(12):e8294. https://doi.org/10.1371/journal.pone.0008294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Thanendrarajan S, Kim Y, Schmidt-Wolf IGH. Understanding and targeting the Wnt/β-catenin signaling pathway in chronic leukemia. Leuk Res Treatment. 2011;2011:1–7. https://doi.org/10.4061/2011/329572.

    Article  CAS  Google Scholar 

  28. Petrini M, Conte A, Caracciolo F, Sabbatini A, Grassi B, Ronca G. Reversing of chlorambucil resistance by ethacrynic acid in a B-CLL patient. Br J Haematol. 1993;85:409–10. https://doi.org/10.1111/j.1365-2141.1993.tb03187.x.

    Article  CAS  PubMed  Google Scholar 

  29. Lu D, Choi MY, Yu J, Castro JE, Kipps TJ, Carson DA. Salinomycin inhibits wnt signaling and selectively induces apoptosis in chronic lymphocytic leukemia cells. Proc Natl Acad Sci U S A. 2011;108:13253–7. https://doi.org/10.1073/pnas.1110431108.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Razavi R, Gehrke I, Gandhirajan RK, Poll-Wolbeck SJ, Hallek M, Kreuzer KA. Nitric oxide-donating acetylsalicylic acid induces apoptosis in chronic lymphocytic leukemia cells and shows strong antitumor efficacy in vivo. Clin Cancer Res. 2011;17:286–93. https://doi.org/10.1158/1078-0432.CCR-10-1030.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Sameh Shamaa, Layla M. Saleh, Noha Eisa and Manal Atef designed the study. Layla M. Saleh performed experiments. Sameh Shamaa, Layla M. Saleh, Noha Eisa and Manal Atef analyzed the data and wrote the manuscript. Sameh Shamaa, Layla M. Saleh and Noha Eisa assisted in editing the manuscript.

Corresponding author

Correspondence to Layla M. Saleh MD/PhD.

Ethics declarations

Conflict of interest

M. Atef, L.M. Saleh, N. Eisa, and S. Shamaa declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atef, M., Saleh, L.M., Eisa, N. et al. WNT3 and LEF1 as markers for diagnosis and survival prediction in chronic lymphocytic leukemia patients. memo 16, 268–274 (2023). https://doi.org/10.1007/s12254-020-00651-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12254-020-00651-8

Keywords

Navigation