Skip to main content
Log in

Personalized medicine for breast cancer: dream or reality?

  • review
  • Published:
memo - Magazine of European Medical Oncology Aims and scope Submit manuscript

Abstract

The National Cancer Institute of the United States defines personalized medicine (PM) as “a form of medicine that uses information about a person’s genes, proteins and environment to prevent, diagnose and treat disease” (National Cancer Institute, Dictionary of Cancer Terms) [1]. Consequently, the ultimate dream is the generation of a “molecular fingerprint” via a simple blood test or tumor sample that allows the physician to refine an individual patient’s prognosis, select the best possible therapeutic option, and minimize the toxicity from therapies by identification of distinct genetic markers. The enormous gains to patients and ultimately health care systems are unmistakable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. National Cancer Institute. Dictionary of Cancer Terms.

  2. World Health Organization GLOBCAN. Cancer incidence, mortality and prevalence worldwide in 2008.

  3. O’Shaughnessy J Extending survival with chemotherapy in metastatic breast cancer. Oncologist. 2005;10(Suppl. 3):20–90.

    Google Scholar 

  4. Balmaña J, Díez O, Rubio IT, Cardoso F EGWG BRCA 2 breast cancer. ESMO clinical practice guidelines. Ann Oncol. 2011;22:vi3–4.

    Google Scholar 

  5. Sotiriou C, Pusztai L. Gene-expression signatures in breast cancer. N Engl J Med. 2009;360:790–800.

    Article  PubMed  CAS  Google Scholar 

  6. Reis-Filho JS, Weigelt B, Fumagalli D, Sotiriou C. Molecular profiling: moving away from tumor philately. Sci Transl Med. 2010;2:47ps43.

    Google Scholar 

  7. Wirapati P, et al. Meta-analysis of gene expression profiles in breast cancer: toward a unified understanding of breast cancer subtyping and prognosis signatures. Breast Cancer Res. 2008;10:R65.

    Article  Google Scholar 

  8. Cuzick J, Sestak I, Ferree S, Cowens JW, Dowsett M. Prediction of late breast cancer recurrence by the ROR (PAM50) score in postmenopausal women in the TransATAC cohort. Ann Oncol. 2012;23:Abstr. 1201.

    Google Scholar 

  9. Dubsky P, Brase JC, Fisch K, Jakesz R, Singer CF, Greil R, Dietze O, Weber KE, Petry C, Kronenwett R, Rudas M, Knauer M, Gnant M, Filipits M. The EndoPredict score identifies late distant metastases in ER+/HER2– breast cancer patients. Cancer Res. 2012;72:Abstr. S4–3.

    Google Scholar 

  10. Sgroi DC, Sestak I, Cuzick J, Zhang Y, Schnabel CA, Erlander MG, Goss PE, Dowsett M. Comparative Performance of Breast Cancer Index (BCI) vs. Oncotype Dx and IHC4 in the Prediction of Late Recurrence in Hormonal Receptor-Positive Lymph Node-Negative Breast Cancer Patients: a TransATAC Study. Cancer Res. 2012;72:Abstr. S1–9.

    Google Scholar 

  11. Gnant M, Filipits M, Dubsky P, Rudas M, Balic M, Greil R, Ferree S, Cowens JW, Schaper C, NT Predicting risk for late metastasis: the PAM50 risk of recurrence (ROR) score after 5 years of endocrine therapy in postmenopausal women with HR+ early breast cancer: a study on 1,478 patients from the ABCSG-8 trial. Ann Oncol. 2013;24:Abstr. 530_PR.

  12. Sestak I, Dowsett M, Sgroi D, Erlander M, Ferree S, Cowens J, Cuzick J. Comparison of five different scores for the prediction of late recirrence for oestrogen receptor-positive breast cancer. Ann Oncol. 2013;24:Abstr. 540_PR.

  13. Cardoso F, et al. Clinical application of the 70-gene profile: the MINDACT trial. J Clin Oncol. 2008;26:729–35.

    Article  PubMed  Google Scholar 

  14. Sparano JA, Paik S. Development of the 21-gene assay and its application in clinical practice and clinical trials. J Clin Oncol. 2008;26:721–28.

    Article  PubMed  Google Scholar 

  15. Ma X-J, Dahiya S, Richardson E, Erlander M, Sgroi DC. Gene expression profiling of the tumor microenvironment during breast cancer progression. Breast Cancer Res. 2009;11:R7.

    Google Scholar 

  16. Desmedt C, et al. Biological processes associated with breast cancer clinical outcome depend on the molecular subtypes. Clin Cancer Res. 2008;14:5158–65.

    Article  PubMed  CAS  Google Scholar 

  17. Iwamoto T, et al. Gene pathways associated with prognosis and chemotherapy sensitivity in molecular subtypes of breast cancer. J Natl Cancer Inst. 2011;103:264–72.

    Article  PubMed  CAS  Google Scholar 

  18. Albain KS, et al. Prognostic and predictive value of the 21-gene recurrence score assay in postmenopausal women with node-positive, oestrogen-receptor-positive breast cancer on chemotherapy: a retrospective analysis of a randomised trial. Lancet Oncol. 2010;11:55–65.

    Article  PubMed  CAS  Google Scholar 

  19. Desmedt C, et al. Multifactorial approach to predicting resistance to anthracyclines. J Clin Oncol. 2011;29:1578–86.

    Article  PubMed  CAS  Google Scholar 

  20. Symmans WF, et al. Genomic index of sensitivity to endocrine therapy for breast cancer. J Clin Oncol. 2010;28:4111–9.

    Article  PubMed  Google Scholar 

  21. Juul N, et al. Assessment of an RNA interference screen-derived mitotic and ceramide pathway metagene as a predictor of response to neoadjuvant paclitaxel for primary triple-negative breast cancer: a retrospective analysis of five clinical trials. Lancet Oncol. 2010;11:358–65.

    Article  PubMed  CAS  Google Scholar 

  22. Barretina J, et al. The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012;483:603–7.

    Article  PubMed  CAS  Google Scholar 

  23. Garnett MJ, et al. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature. 2012;483:570–5.

    Article  PubMed  CAS  Google Scholar 

  24. Frueh FW, et al. Pharmacogenomic biomarker information in drug labels approved by the United States food and drug administration: prevalence of related drug use. Pharmacotherapy. 2008;28:992–8.

    Article  PubMed  Google Scholar 

  25. Nowell SA, et al. Association of genetic variation in tamoxifen-metabolizing enzymes with overall survival and recurrence of disease in breast cancer patients. Breast Cancer Res Treat. 2005;91:249–58.

    Article  PubMed  CAS  Google Scholar 

  26. Okishiro M, et al. Genetic polymorphisms of CYP2D6 10 and CYP2C19 2, 3 are not associated with prognosis, endometrial thickness, or bone mineral density in Japanese breast cancer patients treated with adjuvant tamoxifen. Cancer. 2009;115:952–61.

    Article  PubMed  CAS  Google Scholar 

  27. Schroth W, et al. Association between CYP2D6 polymorphisms and outcomes among women with early stage breast cancer treated with tamoxifen. JAMA. 2009;302:1429–36.

    Article  PubMed  CAS  Google Scholar 

  28. Goetz MP, et al. CYP2D6 metabolism and patient outcome in the Austrian Breast and Colorectal Cancer Study Group trial (ABCSG) 8. Clin Cancer Res. 2013;19:500–7.

    Article  PubMed  CAS  Google Scholar 

  29. Braun S, et al. A pooled analysis of bone marrow micrometastasis in breast cancer. N Engl J Med. 2005;353:793–802.

    Article  PubMed  CAS  Google Scholar 

  30. Cote R, Giuliano AE, Hawes D, Ballman KV, Whitworth PW, Blumencranz PW, Reintgen DS, Morrow M, Leitch AM, Hunt K. ACOSOG Z0010: a multicenter prognostic study of sentinel node (SN) and bone marrow (BM) micrometastases in women with clinical T1/T2 N0 M0 breast cancer. J Clin Oncol. 2010;28:Abstr. CRA504.

  31. Janni W, et al. Persistence of disseminated tumor cells in the bone marrow of breast cancer patients predicts increased risk for relapse—a European pooled analysis. Clin Cancer Res. 2011;17:2967–76.

    Article  PubMed  Google Scholar 

  32. Cristofanilli M, et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med. 2004;351:781–91.

    Article  PubMed  CAS  Google Scholar 

  33. Pierga J-Y, et al. High independent prognostic and predictive value of circulating tumor cells compared with serum tumor markers in a large prospective trial in first-line chemotherapy for metastatic breast cancer patients. Ann Oncol. 2012;23:618–24.

    Article  PubMed  Google Scholar 

  34. Budd GT, et al. Circulating tumor cells versus imaging–predicting overall survival in metastatic breast cancer. Clin Cancer Res. 2006;12:6403–9.

    Article  PubMed  CAS  Google Scholar 

  35. De Giorgi U et al Circulating tumor cells and [18F]fluorodeoxyglucose positron emission tomography/computed tomography for outcome prediction in metastatic breast cancer. J Clin Oncol. 2009;27:3303–11.

    Article  PubMed  Google Scholar 

  36. Liu MC, et al. Circulating tumor cells: a useful predictor of treatment efficacy in metastatic breast cancer. J Clin Oncol. 2009;27:5153–9.

    Article  PubMed  Google Scholar 

  37. Bidard F-C, et al. Single circulating tumor cell detection and overall survival in nonmetastatic breast cancer. Ann Oncol. 2010;21:729–33.

    Article  PubMed  Google Scholar 

  38. Rack B, Schindlbeck C, Andergassen U, Lorenz R, Zwingers T, Schneeweiss A, Lichtenegger W, Beckmann M, Sommer H, Pantel K, Friese K, Janni W. Prognostic relevance of circulating tumor cells in the peripheral blood of primary breast cancer patients. San Antonio Breast Cancer Conference. 2010:Abstr. S6–5.

  39. Pierga J-Y, et al. Circulating tumor cell detection predicts early metastatic relapse after neoadjuvant chemotherapy in large operable and locally advanced breast cancer in a phase II randomized trial. Clin Cancer Res. 2008;14:7004–10.

    Article  PubMed  CAS  Google Scholar 

  40. Riethdorf S, et al. Detection and HER2 expression of circulating tumor cells: prospective monitoring in breast cancer patients treated in the neoadjuvant GeparQuattro trial. Clin Cancer Res. 2010;16:2634–45.

    Article  PubMed  CAS  Google Scholar 

  41. Hanash SM, Baik CS, Kallioniemi O. Emerging molecular biomarkers–blood-based strategies to detect and monitor cancer. Nat Rev Clin Oncol. 2011;8:142–50.

    Article  PubMed  Google Scholar 

  42. McBride DJ, et al. Use of cancer-specific genomic rearrangements to quantify disease burden in plasma from patients with solid tumors. Genes chromosome cancer. 2010;49:1062–9.

    Google Scholar 

  43. Leary RJ, et al Development of personalized tumor biomarkers using massively parallel sequencing. Sci Translational Med. 2010;2:20ra14.

    Google Scholar 

  44. Zardavas D, Baselga J, Piccart M. Emerging targeted agents in metastatic breast cancer. Nat Rev Clin Oncol. 2013;10:191–210.

    Article  PubMed  CAS  Google Scholar 

  45. Bates SE, Amiri-Kordestani L, Giaccone G. Drug development: portals of discovery. Clin Cancer Res. 2012;18:23–32.

    Article  PubMed  CAS  Google Scholar 

  46. O’Shaughnessy J, Schwartzberg LS, Danso MA, et al. A randomized phase III study of iniparib (BSI-201) in combination with gemcitabine/carboplatin (G/C) in metastatic triple-negative breast cancer (TNBC). J Clin Oncol. 2011;29:Abstr. 1007, presented data—ASCO Annual Meeting 2011.

  47. Verdine GL, Walensky LD. The challenge of drugging undruggable targets in cancer: lessons learned from targeting BCL-2 family members. Clin Cancer Res. 2007;13:7264–70.

    Article  PubMed  CAS  Google Scholar 

  48. Yee D. Insulin-like growth factor receptor inhibitors: baby or the bathwater? J Natl Cancer Inst. 2012;104:975–81.

    Article  PubMed  CAS  Google Scholar 

  49. De Palma M, Hanahan D. The biology of personalized cancer medicine: facing individual complexities underlying hallmark capabilities. Mol Oncol. 2012;6:111–27.

    Article  PubMed  Google Scholar 

  50. Buyse M, Sargent DJ, Grothey A, Matheson A, De Gramont A. Biomarkers and surrogate end points—the challenge of statistical validation. Nat Rev Clin Oncol. 2010;7:309–17.

    Article  PubMed  Google Scholar 

  51. Graham ID, Logan J, Harrison MB, Straus SE, Tetroe J, Caswell W, Robinson N. Lost in knowledge translation: time for a map? J Contin Educ Health Prof. 2006;26:13–24.

    Article  PubMed  Google Scholar 

  52. Sung NS, et al. Central challenges facing the national clinical research enterprise. JAMA. 2003;289:1278–87.

    Article  PubMed  Google Scholar 

  53. Westfall J, Mold J, Fagnan L. Practiced-based-research—“Blue Highways” on the NIH roadmap. JAMA. 2007;297:403–6.

    Article  PubMed  CAS  Google Scholar 

  54. DiMasi JA, Grabowski HG. Economics of new oncology drug development. J Clin Oncol. 2007;25:209–16.

    Article  PubMed  Google Scholar 

  55. Gianni L, et al. Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (NeoSphere): a randomised multicentre, open-label, phase 2 trial. Lancet Oncol. 2012;13:25–32.

    Article  PubMed  CAS  Google Scholar 

  56. Baselga J, et al. Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N Engl J Med. 2012;366:109–19.

    Article  PubMed  CAS  Google Scholar 

  57. Beyond the pill. The economist. 2007;October 25.

  58. Melese T, Lin SM, Chang JL, Cohen NH. Open innovation networks between academia and industry: an imperative for breakthrough therapies. Nat Med. 2009;15:502–7.

    Article  PubMed  CAS  Google Scholar 

  59. Pugliano L, Fumagalli D, Irrthum A, Schenk B, Saini KS, Dolci SM, Arahmani A, Piccart MJ, Bucur A. Integrate: a new model in collaborative breast cancer research. Advanced Breast Cancer Conference 1. 2011:Poster PO43.

  60. Oestreicher N, et al. Gene expression profiling and breast cancer care: what are the potential benefits and policy implications? Genet Med. 2005;7:380–9.

    Article  PubMed  Google Scholar 

  61. Hornberger J, Cosler LE, Lyman GH. Economic analysis of targeting chemotherapy using a 21-gene RT-PCR assay in lymph-node-negative, estrogen-receptor-positive, early-stage breast cancer. Am J Manag Care. 2005;11:313–24.

    PubMed  Google Scholar 

  62. Lo SS, et al. Prospective multicenter study of the impact of the 21-gene recurrence score assay on medical oncologist and patient adjuvant breast cancer treatment selection. J Clin Oncol. 2010;28:1671–6.

    Article  PubMed  Google Scholar 

  63. Finak G, et al. Stromal gene expression predicts clinical outcome in breast cancer. Nat Med. 2008;14:518–27.

    Article  PubMed  CAS  Google Scholar 

  64. Desmedt C, et al. Characterization and clinical evaluation of CD10+ stroma cells in the breast cancer microenvironment. Clin Cancer Res. 2012;18:1004–14.

    Article  PubMed  CAS  Google Scholar 

  65. Teschendorff AE, Miremadi A, Pinder SE, Ellis IO, Caldas C. An immune response gene expression module identifies a good prognosis subtype in estrogen receptor negative breast cancer. Genome Biol. 2007;8:R157.

    Article  Google Scholar 

  66. Yau C, et al. A multigene predictor of metastatic outcome in early stage hormone receptor-negative and triple-negative breast cancer. Breast Cancer Res. 2010;12:R85.

    Google Scholar 

  67. Liedtke C, et al. Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol. 2008;26:1275–81.

    Article  PubMed  Google Scholar 

  68. Chang J, et al. Apoptosis and proliferation as predictors of chemotherapy response in patients with breast carcinoma. Cancer. 2000;89:2145–52.

    Article  PubMed  CAS  Google Scholar 

  69. Gámez C, Flamen P, Holmes E, Robles J, Gebhart G, Di Cosimo S, Eidtmann H, Piccart-Gebhart M, Baselga J, de Azambuja E, Team, on behalf of the N.-A. S. FDG-PET/CT for Early Prediction of Response to Neoadjuvant Lapatinib, Trastuzumab, and their Combination in HER2 Positive Breast Cancer Patients: The Neo-ALTTO PET Study Results. European Society for Medical Oncology Annual Meeting. 2011:Abstr. S–S013.

  70. Tice JA, Cummings SR, Ziv E, Kerlikowske K. Mammographic breast density and the Gail model for breast cancer risk prediction in a screening population. Breast Cancer Res Treat. 2005;94:115–22.

    Article  PubMed  Google Scholar 

  71. Gnant M, Baselga J, Rugo HS, Noguchi S, Pritchard KI, Burris HA, Piccart-Gebhart MJ, Hart LL, Eakle JF, Mukai H, Iwata H, El-Hashimy M, Rao S, Taran T, Sahmoud T, Lebwohl DE, Hortobagyi GN. Effects of everolimus (EVE) on disease progression in bone and bone markers (BM) in patients (pts) with bone metastases (mets). J Clin Oncol. 2012;30:Abstr. 512.

    Google Scholar 

  72. Geisler J, Haynes B, Anker G, Dowsett M, Lønning PE. Influence of letrozole and anastrozole on total body aromatization and plasma estrogen levels in postmenopausal breast cancer patients evaluated in a randomized, cross-over study. J Clin Oncol. 2002;20:751–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martine Piccart MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pugliano, L., Zardavas, D. & Piccart, M. Personalized medicine for breast cancer: dream or reality?. memo 6, 158–166 (2013). https://doi.org/10.1007/s12254-013-0104-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12254-013-0104-x

Keywords

Navigation