Skip to main content

Advertisement

Log in

A Three-microRNA Panel in Serum: Serving as a Potential Diagnostic Biomarker for Renal Cell Carcinoma

  • Original Article
  • Published:
Pathology & Oncology Research

Abstract

Purpose

Renal cell carcinoma (RCC) accounts for about 120,000 death each year. Although surgery is a routine treatment, RCC could be fatal if not diagnosed at an early stage. This study aims to search for suitable serum biomarkers and construct a miRNA panel with high diagnostic sensitivity or specificity.

Methods

Totally 146 RCC patients and 150 normal control were involved in this three-stage study. Serum expression levels of 30 miRNAs selected from literature were tested by reverse transcription quantitative PCR (RT-qPCR) in the screening stage, the testing stage, and the validation stage. The diagnostic efficiency of miRNAs was evaluated by receiver operating characteristic (ROC) curve and area under curve (AUC) analysis. A panel with the highest diagnostic efficiency was constructed by backward stepwise logistic regression analysis. Additionally, bioinformatics analysis was used to investigate potential biological functions and mechanisms of candidate miRNAs.

Results

MiR-224-5p, miR-34b-3p, miR-129-2-3p and miR-182-5p with low to moderate diagnostic ability (AUC = 0.692, 0.778, 0.687 and 0.745, respectively) were selected as candidate miRNAs after the three-stage study. The final diagnostic panel was consisted by miR-224-5p, miR-34b-3p and miR-182-5p with AUC = 0.855. No significance has been found between these four miRNAs and tumor location, Fuhrman Grade and AJCC clinical stages of RCC. Bioinformatic analysis suggested that the three-miRNAs panel may participate in tumorigenesis of RCC by targeting CORO1C.

Conclusions

The three-miRNA panel in serum could serve as a non-invasive diagnostic biomarker of RCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127(12):2893–2917. https://doi.org/10.1002/ijc.25516

    Article  CAS  PubMed  Google Scholar 

  2. Linehan WM, Schmidt LS, Crooks DR, Wei D, Srinivasan R, Lang M, Ricketts CJ (2019) The metabolic basis of kidney cancer. Cancer Discov 9(8):1006–1021. https://doi.org/10.1158/2159-8290.cd-18-1354

    Article  PubMed  Google Scholar 

  3. Gago-Dominguez M, Yuan JM, Castelao JE, Ross RK, Yu MC (2001) Family history and risk of renal cell carcinoma. Cancer Epidemiol Biomark Prev 10(9):1001–1004

    CAS  Google Scholar 

  4. Shen C, Beroukhim R, Schumacher SE, Zhou J, Chang M, Signoretti S, Kaelin WG (2011) Genetic and functional studies implicate HIF1 as a 14q kidney cancer suppressor gene. Cancer Discov 1(3):222–235. https://doi.org/10.1158/2159-8290.cd-11-0098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Srinivasan R, Ricketts CJ, Sourbier C, Linehan WM (2015) New strategies in renal cell carcinoma: Targeting the genetic and metabolic basis of disease. Clin Cancer Res 21(1):10–17. https://doi.org/10.1158/1078-0432.ccr-13-2993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sato Y, Yoshizato T, Shiraishi Y, Maekawa S, Okuno Y, Kamura T, Shimamura T, Sato-Otsubo A, Nagae G, Suzuki H, Nagata Y, Yoshida K, Kon A, Suzuki Y, Chiba K, Tanaka H, Niida A, Fujimoto A, Tsunoda T, Morikawa T, Maeda D, Kume H, Sugano S, Fukayama M, Aburatani H, Sanada M, Miyano S, Homma Y, Ogawa S (2013) Integrated molecular analysis of clear-cell renal cell carcinoma. Nat Genet 45(8):860–867. https://doi.org/10.1038/ng.2699

    Article  CAS  PubMed  Google Scholar 

  7. Neal CS, Michael MZ, Rawlings LH, Van der Hoek MB, Gleadle JM (2010) The VHL-dependent regulation of microRNAs in renal cancer. BMC Med 8:64. https://doi.org/10.1186/1741-7015-8-64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Baranwal S, Alahari SK (2010) miRNA control of tumor cell invasion and metastasis. Int J Cancer 126(6):1283–1290. https://doi.org/10.1002/ijc.25014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. He YH, Chen C, Shi Z (2018) The biological roles and clinical implications of microRNAs in clear cell renal cell carcinoma. J Cell Physiol 233(6):4458–4465. https://doi.org/10.1002/jcp.26347

    Article  CAS  PubMed  Google Scholar 

  10. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O’Briant KC, Allen A, Lin DW, Urban N, Drescher CW, Knudsen BS, Stirewalt DL, Gentleman R, Vessella RL, Nelson PS, Martin DB, Tewari M (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 105(30):10513–10518. https://doi.org/10.1073/pnas.0804549105

    Article  PubMed  PubMed Central  Google Scholar 

  11. Krazinski BE, Kiewisz J, Sliwinska-Jewsiewicka A, Kowalczyk AE, Grzegrzolka J, Godlewski J, Kwiatkowski P, Dziegiel P, Kmiec Z (2019) Altered expression of DDR1 in clear cell renal cell carcinoma correlates with miR-199a/b-5p and patients’ outcome. Cancer Genomics Proteomics 16(3):179–193. https://doi.org/10.21873/cgp.20124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  13. Feng H, Ge F, Du L, Zhang Z, Liu D (2019) MiR-34b-3p represses cell proliferation, cell cycle progression and cell apoptosis in non-small-cell lung cancer (NSCLC) by targeting CDK4. J Cell Mol Med 23(8):5282–5291. https://doi.org/10.1111/jcmm.14404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhu XL, Ren LF, Wang HP, Bai ZT, Zhang L, Meng WB, Zhu KX, Ding FH, Miao L, Yan J, Wang YP, Liu YQ, Zhou WC, Li X (2019) Plasma microRNAs as potential new biomarkers for early detection of early gastric cancer. World J Gastroenterol 25(13):1580–1591. https://doi.org/10.3748/wjg.v25.i13.1580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Roman-Canal B, Moiola CP, Gatius S, Bonnin S, Ruiz-Miro M, Gonzalez E, Gonzalez-Tallada X, Llordella I, Hernandez I, Porcel JM, Gil-Moreno A, Falcon-Perez JM, Ponomarenko J, Matias-Guiu X, Colas E (2019) EV-associated miRNAs from peritoneal lavage are a source of biomarkers in endometrial cancer. Cancers (Basel) 11(6). https://doi.org/10.3390/cancers11060839

  16. Muinelo-Romay L, Casas-Arozamena C, Abal M (2018) Liquid biopsy in endometrial cancer: New opportunities for personalized oncology. Int J Mol Sci 19(8). https://doi.org/10.3390/ijms19082311

  17. Chanudet E, Wozniak MB, Bouaoun L, Byrnes G, Mukeriya A, Zaridze D, Brennan P, Muller DC, Scelo G (2017) Large-scale genome-wide screening of circulating microRNAs in clear cell renal cell carcinoma reveals specific signatures in late-stage disease. Int J Cancer 141(9):1730–1740. https://doi.org/10.1002/ijc.30845

    Article  CAS  PubMed  Google Scholar 

  18. Wang C, Hu J, Lu M, Gu H, Zhou X, Chen X, Zen K, Zhang CY, Zhang T, Ge J, Wang J, Zhang C (2015) A panel of five serum miRNAs as a potential diagnostic tool for early-stage renal cell carcinoma. Sci Rep 5:7610. https://doi.org/10.1038/srep07610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Qi Y, Wang L, Wang K, Peng Z, Ma Y, Zheng Z, Shang D, Xu W, Zheng J (2019) New mechanistic insights of clear cell renal cell carcinoma from integrated miRNA and mRNA expression profiling studies. Biomed Pharmacother 111:821–834. https://doi.org/10.1016/j.biopha.2018.12.099

    Article  CAS  PubMed  Google Scholar 

  20. Jing ZF, Bi JB, Li Z, Liu X, Li J, Zhu Y, Zhang XT, Zhang Z, Li Z, Kong CZ (2019) Inhibition of miR-34a-5p can rescue disruption of the p53-DAPK axis to suppress progression of clear cell renal cell carcinoma. Mol Oncol 13(10):2079–2097. https://doi.org/10.1002/1878-0261.12545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vogt M, Munding J, Gruner M, Liffers ST, Verdoodt B, Hauk J, Steinstraesser L, Tannapfel A, Hermeking H (2011) Frequent concomitant inactivation of miR-34a and miR-34b/c by CpG methylation in colorectal, pancreatic, mammary, ovarian, urothelial, and renal cell carcinomas and soft tissue sarcomas. Virchows Arch 458(3):313–322. https://doi.org/10.1007/s00428-010-1030-5

    Article  PubMed  Google Scholar 

  22. Shiomi E, Sugai T, Ishida K, Osakabe M, Tsuyukubo T, Kato Y, Takata R, Obara W (2019) Analysis of expression patterns of MicroRNAs that are closely associated with renal carcinogenesis. Front Oncol 9:431. https://doi.org/10.3389/fonc.2019.00431

    Article  PubMed  PubMed Central  Google Scholar 

  23. Xu X, Wu J, Li S, Hu Z, Xu X, Zhu Y, Liang Z, Wang X, Lin Y, Mao Y, Chen H, Luo J, Liu B, Zheng X, Xie L (2014) Downregulation of microRNA-182-5p contributes to renal cell carcinoma proliferation via activating the AKT/FOXO3a signaling pathway. Mol Cancer 13:109. https://doi.org/10.1186/1476-4598-13-109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cao MQ, You AB, Zhu XD, Zhang W, Zhang YY, Zhang SZ, Zhang KW, Cai H, Shi WK, Li XL, Li KS, Gao DM, Ma DN, Ye BG, Wang CH, Qin CD, Sun HC, Zhang T, Tang ZY (2018) miR-182-5p promotes hepatocellular carcinoma progression by repressing FOXO3a. J Hematol Oncol 11(1):12. https://doi.org/10.1186/s13045-018-0555-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kulkarni P, Dasgupta P, Bhat NS, Shahryari V, Shiina M, Hashimoto Y, Majid S, Deng G, Saini S, Tabatabai ZL, Yamamura S, Tanaka Y, Dahiya R (2018) Elevated miR-182-5p associates with renal cancer cell mitotic arrest through diminished MALAT-1 expression. Mol Cancer Res 16(11):1750–1760. https://doi.org/10.1158/1541-7786.MCR-17-0762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cheng Y, Li Z, Xie J, Wang P, Zhu J, Li Y, Wang Y (2018) MiRNA-224-5p inhibits autophagy in breast cancer cells via targeting Smad4. Biochem Biophys Res Commun 506(4):793–798. https://doi.org/10.1016/j.bbrc.2018.10.150

    Article  CAS  PubMed  Google Scholar 

  27. Jiang Y, Zhang H, Li W, Yan Y, Yao X, Gu W (2020) FOXM1-Activated LINC01094 promotes clear cell renal cell carcinoma development via MicroRNA 224-5p/CHSY1. Mol Cell Biol 40(3). https://doi.org/10.1128/MCB.00357-19

  28. White NM, Bao TT, Grigull J, Youssef YM, Girgis A, Diamandis M, Fatoohi E, Metias M, Honey RJ, Stewart R, Pace KT, Bjarnason GA, Yousef GM (2011) miRNA profiling for clear cell renal cell carcinoma: biomarker discovery and identification of potential controls and consequences of miRNA dysregulation. J Urol 186(3):1077–1083. https://doi.org/10.1016/j.juro.2011.04.110

    Article  CAS  PubMed  Google Scholar 

  29. Fan L, Wei Y, Ding X, Li B (2019) Coronin3 promotes nasopharyngeal carcinoma migration and invasion by induction of epithelial-to-mesenchymal transition. Onco Targets Ther 12:9585–9598. https://doi.org/10.2147/OTT.S215674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by Basic Research Project of Peking University Shenzhen Hospital (JCYJ2017001, JCYJ2017004, JCYJ2017005, JCYJ2017006, JCYJ2017007, JCYJ2017012), Clinical Research Project of Peking University Shenzhen Hospital (BCYJ2017001), Science and Technology Development Fund Project of Shenzhen (no. JCYJ20180507183102747) and Clinical Research Project of Shenzhen Health Commission (no. SZLY2018023).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongqing Lai or Liangchao Ni.

Ethics declarations

Conflict of interest

There are no conflicts of interest.

Ethical approval

The Ethics approval and consent to participate in this study was approved by the Ethics Committee of Shenzhen Hospital, Peking University.

Informed consent

All the participators understood the purpose of specimens and signed the informed consent form.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims inpublished maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, G., Li, X., Chen, Z. et al. A Three-microRNA Panel in Serum: Serving as a Potential Diagnostic Biomarker for Renal Cell Carcinoma. Pathol. Oncol. Res. 26, 2425–2434 (2020). https://doi.org/10.1007/s12253-020-00842-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-020-00842-y

Keywords

Navigation