Skip to main content

Advertisement

Log in

Associations of Polymorphisms in mir-196a2, mir-146a and mir-149 with Colorectal Cancer Risk: A Meta-Analysis

  • Research
  • Published:
Pathology & Oncology Research

Abstract

MicroRNAs (miRNAs) are non-coding RNAs which act as tumor suppressors or oncogenes. And single nucleotide polymorphism (SNP) in miRNA regions is one type of genetic variations in human genome. Various studies have investigated the associations of miRNAs SNP and kinds of cancers. In this article, we searched eligible studies to explore the relationships between mir-196a2 /mir-146a /mir-149 polymorphisms and colorectal cancer (CRC). A literature search of PubMed, Web of Science and ScienceDirect was conducted to identify all relevant studies. Three genetic models with pooled ratio and 95 % confidence interval were used to evaluate the associations. We found that mir-196a2 polymorphism was significantly associated with CRC in Asian group (additive model: OR = 1.197, 95 %CI 1.084 ~ 1.32, P < 0.001; dominant model: OR = 1.247, 95 %CI 1.065 ~ 1.46, P = 0.006; recessive model: OR = 1.298, 95 %CI 1.101 ~ 1.531, P = 0.002). And no associations were observed between SNPs of mir-146a, mir-149 and CRC in three genetic models. We also found CRC risk was not associated with mir-146a and mir-149 polymorphisms in population subgroup analysis. The current meta-analysis suggests that mir-196a2 polymorphism is associated with CRC, especially in Asian group. While, no associations have been found between mir-146a /mir-149 polymorphisms and CRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CRC:

colorectal cancer

miRNA:

microRNA

SNP:

single nucleotide polymorphism

OR:

odds ratio

CI:

confidence interval

HWE:

Hardy-Weinberg equilibrium

References

  1. Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355

    Article  CAS  PubMed  Google Scholar 

  2. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  3. Bartels CL, Tsongalis GJ (2009) MicroRNAs: novel biomarkers for human cancer. Clin Chem 55:623–631

    Article  CAS  PubMed  Google Scholar 

  4. Rosenfeld N, Aharonov R, Meiri E et al (2008) MicroRNAs accurately identify cancer tissue origin. Nat Biotechnol 26:462–469

    Article  CAS  PubMed  Google Scholar 

  5. Bentwich I (2005) Prediction and validation of microRNAs and their targets. FEBS Lett 579:5904–5910

    Article  CAS  PubMed  Google Scholar 

  6. Brennecke J, Stark A, Russell RB et al (2005) Principles of microRNA-target recognition. PLoS Biol 3:e85

    Article  PubMed  PubMed Central  Google Scholar 

  7. Yang W, Chendrimada TP, Wang Q et al (2006) Modulation of microRNA processing and expression through RNA editing by ADAR deaminases. Nat Struct Mol Biol 13:13–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wu M, Jolicoeur N, Li Z et al (2008) Genetic variations of microRNAs in human cancer and their effects on the expression of miRNAs. Carcinogenesis 29:1710–1716

    Article  CAS  PubMed  Google Scholar 

  9. Jemal A, Siegel R, Ward E et al (2009) Cancer statistics, 2009. CA Cancer J Clin 59:225–249

    Article  PubMed  Google Scholar 

  10. Yang L, Parkin DM, Li L et al (2003) Time trends in cancer mortality in China: 1987–1999. Int J Cancer 106:771–783

    Article  CAS  PubMed  Google Scholar 

  11. Center MM, Jemal A, Ward E (2009) International trends in colorectal cancer incidence rates. Cancer Epidemiol Biomarkers Prev 18:1688–1694

    Article  PubMed  Google Scholar 

  12. Zhan JF, Chen LH, Chen ZX et al (2011) A functional variant in microRNA-196a2 is associated with susceptibility of colorectal cancer in a Chinese population. Arch Med Res 42:144–148

    Article  CAS  PubMed  Google Scholar 

  13. Tian T, Shu Y, Chen J et al (2009) A functional genetic variant in microRNA-196a2 is associated with increased susceptibility of lung cancer in Chinese. Cancer Epidemiol Biomarkers Prev 18:1183–1187

    Article  CAS  PubMed  Google Scholar 

  14. Kim MJ, Yoo SS, Choi YY et al (2010) A functional polymorphism in the pre-microRNA-196a2 and the risk of lung cancer in a Korean population. Lung Cancer 69:127–129

    Article  PubMed  Google Scholar 

  15. Hu Z, Liang J, Wang Z et al (2009) Common genetic variants in pre-microRNAs were associated with increased risk of breast cancer in Chinese women. Hum Mutat 30:79–84

    Article  CAS  PubMed  Google Scholar 

  16. Hoffman AE, Zheng T, Yi C et al (2009) microRNA miR-196a-2 and breast cancer: a genetic and epigenetic association study and functional analysis. Cancer Res 69:5970–5977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Qi P, Dou TH, Geng L et al (2010) Association of a variant in MIR 196A2 with susceptibility to hepatocellular carcinoma in male Chinese patients with chronic hepatitis B virus infection. Hum Immunol 71:621–626

    Article  CAS  PubMed  Google Scholar 

  18. Egger M, Davey SG, Schneider M et al (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315:629–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen H, Sun LY, Chen LL et al (2012) A variant in microRNA-196a2 is not associated with susceptibility to and progression of colorectal cancer in Chinese. Intern Med J 42:e115–e119

    Article  CAS  PubMed  Google Scholar 

  20. Min KT, Kim JW, Jeon YJ et al (2012) Association of the miR-146aC > G, 149C > T, 196a2C > T, and 499A > G polymorphisms with colorectal cancer in the Korean population. Mol Carcinog 51(Suppl 1):E65–E73

    Article  CAS  PubMed  Google Scholar 

  21. Zhu L, Chu H, Gu D et al (2012) A functional polymorphism in miRNA-196a2 is associated with colorectal cancer risk in a Chinese population. DNA Cell Biol 31:350–354

    Article  CAS  PubMed  Google Scholar 

  22. Hezova R, Kovarikova A, Bienertova-Vasku J et al (2012) Evaluation of SNPs in miR-196-a2, miR-27a and miR-146a as risk factors of colorectal cancer. World J Gastroenterol 18:2827–2831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vinci S, Gelmini S, Mancini I et al (2013) Genetic and epigenetic factors in regulation of microRNA in colorectal cancers. Methods 59:138–146

    Article  CAS  PubMed  Google Scholar 

  24. Zhang MW, Jin MJ, Yu YX et al (2012) Associations of lifestyle-related factors, hsa-miR-149 and hsa-miR-605 gene polymorphisms with gastrointestinal cancer risk. Mol Carcinog 51(Suppl 1):E21–E31

    CAS  PubMed  Google Scholar 

  25. Lv M, Dong W, Li L et al (2013) Association between genetic variants in pre-miRNA and colorectal cancer risk in a Chinese population. J Cancer Res Clin Oncol 139:1405–1410

    Article  CAS  PubMed  Google Scholar 

  26. Chae YS, Kim JG, Lee SJ et al (2013) A miR-146a polymorphism (rs2910164) predicts risk of and survival from colorectal cancer. Anticancer Res 33:3233–3239

    CAS  PubMed  Google Scholar 

  27. Ma L, Zhu L, Gu D et al (2013) A genetic variant in miR-146a modifies colorectal cancer susceptibility in a Chinese population. Arch Toxicol 87:825–833

    Article  CAS  PubMed  Google Scholar 

  28. Vogelstein B, Kinzler KW (2004) Cancer genes and the pathways they control. Nat Med 10:789–799

    Article  CAS  PubMed  Google Scholar 

  29. Mueller DW, Bosserhoff AK (2011) MicroRNA miR-196a controls melanoma-associated genes by regulating HOX-C8 expression. Int J Cancer 129:1064–1074

    Article  CAS  PubMed  Google Scholar 

  30. Liu XH, Lu KH, Wang KM et al (2012) MicroRNA-196a promotes non-small cell lung cancer cell proliferation and invasion through targeting HOXA5. BMC Cancer 12:348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yuan Z, Zeng X, Yang D et al (2013) Effects of common polymorphism rs11614913 in Hsa-miR-196a2 on lung cancer risk. PLoS One 8:e61047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xu J, Hu Z, Xu Z et al (2009) Functional variant in microRNA-196a2 contributes to the susceptibility of congenital heart disease in a Chinese population. Hum Mutat 30:1231–1236

    Article  CAS  PubMed  Google Scholar 

  33. Hu Z, Chen J, Tian T et al (2008) Genetic variants of miRNA sequences and non-small cell lung cancer survival. J Clin Invest 118:2600–2608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wei J, Zheng L, Liu S et al (2013) MiR-196a2 rs11614913 T > C polymorphism and risk of esophageal cancer in a Chinese population. Hum Immunol 74:1199–1205

    Article  CAS  PubMed  Google Scholar 

  35. Wang S, Tao G, Wu D et al (2013) A functional polymorphism in MIR196A2 is associated with risk and prognosis of gastric cancer. Mol Carcinog 52(Suppl 1):E87–E95

    Article  CAS  PubMed  Google Scholar 

  36. Zhang H, Su YL, Yu H et al (2012) Meta-analysis of the association between Mir-196a-2 polymorphism and cancer susceptibility. Cancer Biol Med 9:63–72

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Li YJ, Zhang ZY, Mao YY et al (2014) A genetic variant in MiR-146a modifies digestive system cancer risk: a meta-analysis. Asian Pac J Cancer Prev 15:145–150

    Article  PubMed  Google Scholar 

  38. Taganov KD, Boldin MP, Chang KJ et al (2006) NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A 103:12481–12486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pastrello C, Polesel J, Della PL et al (2010) Association between hsa-mir-146a genotype and tumor age-of-onset in BRCA1/BRCA2-negative familial breast and ovarian cancer patients. Carcinogenesis 31:2124–2126

    Article  CAS  PubMed  Google Scholar 

  40. Wang PY, Gao ZH, Jiang ZH et al (2013) The associations of single nucleotide polymorphisms in miR-146a, miR-196a and miR-499 with breast cancer susceptibility. PLoS One 8:e70656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhou B, Dong LP, Jing XY et al (2014) Association between miR-146aG > C and miR-196a2C > T polymorphisms and the risk of hepatocellular carcinoma in a Chinese population. Biol, Tumour

    Google Scholar 

  42. Lin RJ, Lin YC, Yu AL (2010) miR-149* induces apoptosis by inhibiting Akt1 and E2F1 in human cancer cells. Mol Carcinog 49:719–727

    CAS  PubMed  Google Scholar 

  43. Oster B, Linnet L, Christensen LL et al (2013) Non-CpG island promoter hypomethylation and miR-149 regulate the expression of SRPX2 in colorectal cancer. Int J Cancer 132:2303–2315

    Article  PubMed  Google Scholar 

  44. Zhang J, Liu YF, Gan Y (2012) Lack of association between miR-149 C > T polymorphism and cancer susceptibility: a meta-analysis based on 4,677 cases and 4,830 controls. Mol Biol Rep 39:8749–8753

    Article  CAS  PubMed  Google Scholar 

  45. Zhang YG, Shi JX, Song CH et al (2013) Association of mir-499 and mir-149 polymorphisms with cancer risk in the Chinese population: evidence from published studies. Asian Pac J Cancer Prev 14:2337–2342

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation of China (No. 81101547), the Planned Science and Technology Project of Yunnan Province (2012FB134, 2011DH011). And we thank the people who give help for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenru Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Tang, W. Associations of Polymorphisms in mir-196a2, mir-146a and mir-149 with Colorectal Cancer Risk: A Meta-Analysis. Pathol. Oncol. Res. 22, 261–267 (2016). https://doi.org/10.1007/s12253-014-9843-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-014-9843-1

Keywords

Navigation