Skip to main content
Log in

The Apoptotic Effect of Plant Based Nanosilver in Colon Cancer Cells is a p53 Dependent Process Involving ROS and JNK Cascade

  • Research
  • Published:
Pathology & Oncology Research

Abstract

Here, we report the p53 dependent mitochondria-mediated apoptotic mechanism of plant derived silver-nanoparticle (PD-AgNPs) in colorectal cancer cells (CRCs). PD-AgNPs was synthesized by reduction of AgNO3 with leaf extract of a medicinal plant periwinkle and characterized. Uptake of PD-AgNPs (ξ - 2.52 ± 4.31 mV) in HCT116 cells was 3 fold higher in comparison to synthetic AgNPs (ξ +2.293 ± 5.1 mV). A dose dependent increase in ROS production, activated JNK and decreased mitochondrial membrane potential (MMP) were noted in HCT116 but not in HCT116 p53 −/− cells after PD-AgNP exposure. PD-AgNP-mediated apoptosis in CRCs is a p53 dependent process involving ROS and JNK cascade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Satapathy SR, Mohapatra PM, Preet R, Das D, Sarkar B, Choudhuri T, Wyatt MD, Kundu CN (2013) Silver nanoparticles induce apoptosis in human colon cancer cells mediated through p53. Nanomedicine 8:1307–1322. doi:10.2217/nnm.12.176

    Article  CAS  PubMed  Google Scholar 

  2. Tao A, Sinsermsuksaku P, Yang P (2006) Polyhedral silver nanocrystals with distinct scattering signatures. Angew Chem Int Ed 45:4561–4597. doi:10.1002/anie.200601277

    Article  Google Scholar 

  3. AshaRani PV, Low Kah Mun G, Hande MP, Valiyaveettil S (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3:279–290. doi:10.1021/nn800596w

    Article  CAS  PubMed  Google Scholar 

  4. Raveendran P, Fu J, Wallen SL (2003) Completely “green” synthesis and stabilization of metal nanoparticles. J Am Chem Soc 125:13940–13951. doi:10.1021/ja029267j

    Article  CAS  PubMed  Google Scholar 

  5. Jha AK, Prasad K, Kulkarni AR (2009) Synthesis of TiO2 nanoparticles using microorganisms. Colloids Surf B: Biointerfaces 71:226–229. doi:10.1016/j.colsurfb.2009.02.007

    Article  CAS  PubMed  Google Scholar 

  6. Dhillon GS, Brar SK, Kaur S, Verma M (2012) Green approach for nanoparticle biosynthesis by fungi: current trends and applications. Crit Rev Biotechnol 32:49–73. doi:10.3109/07388551.2010.550568

    Article  CAS  PubMed  Google Scholar 

  7. Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13:2638–2650. doi:10.1039/C1GC15386B

    Article  CAS  Google Scholar 

  8. Mukunthan K, Balaji S (2012) Cashew apple juice (Anacardium occidentale L.) speeds up the synthesis of silver nanoparticles. Int J Green Nanotechnol 4:71–79. doi:10.1080/19430892.2012.676900

    Article  CAS  Google Scholar 

  9. Kasthuri J, Veerapandian S, Rajendran N (2009) Biological synthesis of silver and gold nanoparticles using apiin as reducing agent. Colloids Surf B: Biointerfaces 68:55–60. doi:10.1016/j,colsurfb.2008.09.021

    Article  CAS  PubMed  Google Scholar 

  10. Goyal P (2008) In vitro evaluation of crude extracts of Catharanthus roseus for potential antibacterial activity. Int J Green Pharm 2:176–181. doi:10.4103/0973-8258.42739

    Article  Google Scholar 

  11. Rasineni K, Bellamkonda R, Singareddy SR, Desireddy S (2010) Antihyperglycemic activity of Catharanthus roseus leaf powder in streptozotocin-induced diabetic rats. Pharmacogn Res 2:195–201. doi:10.4103/0974-8490.65523

    Article  Google Scholar 

  12. Ponarulselvam S, Panneerselvam C, Murugan K, Aarthi N, Kalimuthu K, Thangamani S (2012) Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn. G. Don and their antiplasmodial activities. Asian Pac J Trop Biomed 2:574–580. doi:10.1016/S2221-1691(12)60100-2

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Jacob SJ, Finub JS, Narayanan A (2012) Synthesis of silver nanoparticles using Piper longum leaf extracts and its cytotoxic activity against Hep-2 cell line. Colloids Surf B: Biointerfaces 91:212–214. doi:10.1016/j.colsurfb.2011.11.001

    Article  PubMed  Google Scholar 

  14. Suzuki H, Toyooka T, Ibuki Y (2007) Simple and easy method to evaluate uptake potential of nanoparticles in mammalian cells using a flow cytometric light scatter analysis. Environ Sci Technol 41:3018–24. doi:10.1021/es0625632

    Article  CAS  PubMed  Google Scholar 

  15. Parang Z, Keshavarz A, Farahi S, Elahi SM, Ghoranneviss M, Parhoodeh S (2012) Fluorescence emission spectra of silver and silver/cobalt nanoparticles. Scientia Iranica F 19:943–47. doi:10.1016/j.scient.2012.02.026

    Article  CAS  Google Scholar 

  16. Chairuangkitti P, Lawanprasert S, Roytrakul S, Aueviriyavit S, Phummiratch D, Kulthong K, Chanvorachote P, Maniratanachote R (2013) Silver nanoparticles induce toxicity in A549 cells via ROS-dependent and ROS-independent pathways. Toxicol Vitro 27:330–338. doi:10.1016/j.tiv.2012.08.021

    Article  CAS  Google Scholar 

  17. Kumar S, Sitasawad SL (2009) N-acetylcysteine prevents glucose/glucose oxidase-induced oxidative stress, mitochondrial damage and apoptosis in h9c2 cells. Life Sci 84:328–36. doi:10.1002/jctb.2023

    Article  CAS  PubMed  Google Scholar 

  18. Wu GS (2004) The functional interactions between the p53 and MAPK signaling pathways. Cancer Biol Ther 3:156–161. doi:10.4161/cbt.3.2.614

    Article  CAS  PubMed  Google Scholar 

  19. Saha MN, Jiang H, Yang Y, Zhu X, Wang X, Schimmer AD, Qiu L, Chang H (2012) Targeting p53 via JNK Pathway: a novel role of RITA for apoptotic signaling in multiple myeloma. PLoS ONE 7:e30215. doi:10.1371/journal.pone.0030215

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Taylor CA, Zheng Q, Liu Z, Thompson JE (2013) Role of p38 and JNK MAPK signaling pathways and tumor suppressor p53 on induction of apoptosis in response to AdeIF5A1 in A549 lung cancer cells. Mol Cancer 12:35–45. doi:10.1186/1476-4598-12-35

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Wilhelm C, Billotey C, Roger J, Pons JN, Bacri JC, Gazeau F (2003) Intracellular uptake of anionic superparamagnetic nanoparticles as a function of their surface coating. Biomaterials 24:1001–1011. doi:10.1016/S0142-9612(02)00440-4

    Article  CAS  PubMed  Google Scholar 

  22. Patil S, Sandberg A, Heckert E, Self W, Seal S (2007) Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential. Biomaterials 28:4600–4607. doi:10.1016/j.biomaterials.2007.07.029

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Lim HK, Asharani PV, Hande MP (2012) Enhanced genotoxicity of silver nanoparticles in DNA repair deficient Mammalian cells. Front Genet 3:104–116. doi:10.3389/fgene.2012.00104

    Article  PubMed Central  PubMed  Google Scholar 

  24. Derfus AM, Chan WCW, Bhatia SN (2004) Intracellular delivery of quantum dots for live cell labeling and organelle tracking. Adv Mater 16:961–966. doi:10.1021/nl102172j

    Article  CAS  Google Scholar 

  25. Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, Sioutas C, Yeh JI, Wiesner MR, Nel AE (2006) Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 6:1794–1807. doi:10.1021/nl061025k

    Article  CAS  PubMed  Google Scholar 

  26. Zhivotovsky B, Orrenius S, Brustugus OT, Doskeland SO (1998) Injected cytochrome c induces apoptosis. Nature 391:449–50. doi:10.1038/35060

    Article  CAS  PubMed  Google Scholar 

  27. Johnson BW, Cepero E, Boise LH (2000) Bcl-xL inhibits cytochrome c release but not mitochondrial depolarization during the activation of multiple death pathways by tumor necrosis factor-alpha. J Biol Chem 275:31546–31553. doi:10.1074/jbc.M001363200

    Article  CAS  PubMed  Google Scholar 

  28. Piao MJ, Kang KA, Lee IK, Kim HS, Kim S, Choi JY, Choi J, Hyun JW (2011) Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicol Lett 201:92–100. doi:10.1016/j.toxlet.2010.12.010

    Article  CAS  PubMed  Google Scholar 

  29. Cargnello M, Roux PP (2011) Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev 75:50–83. doi:10.1128/MMBR.00031-10

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Hsin YH, Chen CF, Huang S, Shih TS, Lai PS, Chueh PJ (2008) The apoptotic effect of nanosilver is mediated by a ROS and JNK dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol Lett 179:130–139. doi:10.1016/j.toxlet.2008.04.015

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors are greatly acknowledged Prof. Bert Vogelstein, Johns Hopkins, Baltimore, USA for providing HCT116 p53 −/− cell lines and also thanks to ICMR and DBT, Govt. of India for financial support.

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chanakya Nath Kundu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 402 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satapathy, S.R., Mohapatra, P., Das, D. et al. The Apoptotic Effect of Plant Based Nanosilver in Colon Cancer Cells is a p53 Dependent Process Involving ROS and JNK Cascade. Pathol. Oncol. Res. 21, 405–411 (2015). https://doi.org/10.1007/s12253-014-9835-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-014-9835-1

Keywords

Navigation