Skip to main content

Advertisement

Log in

Systemic Evaluation of Mechanism of Cytotoxicity in Human Colon Cancer HCT-116 Cells of Silver Nanoparticles Synthesized Using Marine Algae Ulva lactuca Extract

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In the current study, biogenic silver nanoparticles (U-AgNPs) were synthesized using marine green macro-algal Ulva lactuca extract, and evaluated mechanism behind its anticancer activity against the Human colon cancer (HCT-116). The biogenic U-AgNPs were characterized using various physiochemical techniques. The TEM micrographs confirmed the spherical morphology of synthesized U-AgNPs, with a mean size of 8–14 nm. EDX spectrum as well as ICP-OES confirmed that AgNPs was nearly 90% purity for silver. FTIR Spectra analysis of U-AgNPs confirmed U. lactuca extract bioactive molecules presence over U-AgNPs surface as a stabilizing agent, thereby improving biocompatibility. The cytotoxicity study revealed the dose dependent cell death in colon cancer cells with no loss of viability in normal human colon epithelial cells. Furthermore, the fluorescence micrographs of nucleus staining assay revealed the DNA fragmentation and nucleus condensation of cancer cells treated with U-AgNPs, indicating an apoptosis-mediated cell death. The western bolt and RT-PCR analysis of U-AgNPs treated cancer cells showed the rise in proapoptotic markers (P53, Bax, and P21) and decline in anti-apoptotic markers (Bcl-2), thus confirming the p53-dependent apoptosis mediated cell death in HCT-116. Overall, our study concluded that novel biogenic U-AgNPs nanoparticles, synthesized using marine green macro-algal U. lactuca extract showed efficient anticancer activity against HCT-116 cell line and hence could work as potential therapeutic agent for targeted anti-cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Gurunathan, M. Qasim, C. Park, H. Yoo, J.-H. Kim, K. Hong, Cytotoxic potential and molecular pathway analysis of silver nanoparticles in human colon cancer cells HCT116. Int. J. Mol. Sci. 19, 2269 (2018)

    Article  Google Scholar 

  2. A. Fulfager, K.S. Yadav, Understanding the implications of co-delivering therapeutic agents in a nanocarrier to combat multidrug resistance (MDR) in breast cancer. J. Drug Deliv. Sci. Technol. 62, 102405 (2021)

    Article  CAS  Google Scholar 

  3. A.-M. Florea, D. Büsselberg, Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects. Cancers 3, 1351–1371 (2011)

    Article  CAS  Google Scholar 

  4. P. Somu, S. Paul, Protein assisted one pot controlled synthesis of monodispersed and multifunctional colloidal silver–gold alloy nanoparticles. J. Mol. Liq. 291, 111303 (2019)

    Article  CAS  Google Scholar 

  5. J. Zhang, R. Misra, Nanomaterials in microfluidics for disease diagnosis and therapy development. Mater. Technol. 34, 92–116 (2019)

    Article  CAS  Google Scholar 

  6. H. Bagur, C.C. Poojari, G. Melappa, R. Rangappa, N. Chandrasekhar, P. Somu, Biogenically synthesized silver nanoparticles using endophyte fungal extract of Ocimum tenuiflorum and evaluation of biomedical properties. J. Clust. Sci. 31, 1241–1255 (2019)

    Article  CAS  Google Scholar 

  7. K.K. Yadav, M. Arakha, B. Das, B. Mallick, S. Jha, Preferential binding to zinc oxide nanoparticle interface inhibits lysozyme fibrillation and cytotoxicity. Int. J. Biol. Macromol. 116, 955–965 (2018)

    Article  CAS  Google Scholar 

  8. P. Somu, S. Paul, Surface conjugation of curcumin with self-assembled lysozyme nanoparticle enhanced its bioavailability and therapeutic efficacy in multiple cancer cells. J. Mol. Liq. 338, 116623 (2021)

    Article  CAS  Google Scholar 

  9. M. Abd Elkodous, G.S. El-Sayyad, I.Y. Abdelrahman, H.S. El-Bastawisy, F.M. Mosallam, H.A. Nasser et al., Therapeutic and diagnostic potential of nanomaterials for enhanced biomedical applications. Colloids Surf. B 180, 411–428 (2019)

    Article  CAS  Google Scholar 

  10. P. Chaudhary, F. Fatima, A. Kumar, Relevance of nanomaterials in food packaging and its advanced future prospects. J. Inorg. Organomet. Polym Mater. 30, 5180–5192 (2020)

    Article  CAS  Google Scholar 

  11. P. Somu, S. Paul, A biomolecule-assisted one-pot synthesis of zinc oxide nanoparticles and its bioconjugate with curcumin for potential multifaceted therapeutic applications. New J. Chem. 43, 11934–11948 (2019)

    Article  CAS  Google Scholar 

  12. D. Acharya, S. Satapathy, P. Somu, U.K. Parida, G. Mishra, Apoptotic effect and anticancer activity of biosynthesized silver nanoparticles from marine algae chaetomorpha linum extract against human colon cancer cell HCT-116. Biol. Trace Elem. Res. (2020). https://doi.org/10.1007/s12011-020-02304-7

    Article  PubMed  Google Scholar 

  13. F.-D. Cojocaru, D. Botezat, I. Gardikiotis, C.-M. Uritu, G. Dodi, L. Trandafir et al., Nanomaterials designed for antiviral drug delivery transport across biological barriers. Pharmaceutics 12, 171 (2020)

    Article  Google Scholar 

  14. L. Carson, S. Bandara, M. Joseph, T. Green, T. Grady, G. Osuji et al., Green synthesis of silver nanoparticles with antimicrobial properties using Phyla dulcis plant extract. Foodborne Pathog. Dis. (2020). https://doi.org/10.1089/fpd.2019.2714

    Article  PubMed  Google Scholar 

  15. C.A. Das, V.G. Kumar, T.S. Dhas, V. Karthick, K. Govindaraju, J.M. Joselin et al., Antibacterial activity of silver nanoparticles (biosynthesis): a short review on recent advances. Biocatal. Agric. Biotechnol. 27, 101593 (2020)

    Article  Google Scholar 

  16. H. Bagur, R.S. Medidi, P. Somu, P.J. Choudhury, C.S. Karua, P.K. Guttula et al., Endophyte fungal isolate mediated biogenic synthesis and evaluation of biomedical applications of silver nanoparticles. Mater. Technol. (2020). https://doi.org/10.1080/10667857.2020.1819089

    Article  Google Scholar 

  17. K.S. Siddiqi, A. Husen, R.A. Rao, A review on biosynthesis of silver nanoparticles and their biocidal properties. J. Nanobiotechnol. 16, 14 (2018)

    Article  Google Scholar 

  18. A. Chaitanyakumar, K.K. Yadav, L.A. Gomez, P. Somu, S. Senthoor, P.J. Choudhury et al., Biogenically engineered silver nanoparticles using bael leaf extract and evaluation of its therapeutic potential. Mater. Technol. (2021). https://doi.org/10.1080/10667857.2021.1965701

    Article  Google Scholar 

  19. S. Deshmukh, S. Patil, S. Mullani, S. Delekar, Silver nanoparticles as an effective disinfectant: a review. Mater. Sci. Eng. C 97, 954–965 (2019)

    Article  CAS  Google Scholar 

  20. D. Acharya, S. Satapathy, J.J. Thathapudi, P. Somu, G. Mishra, Biogenic synthesis of silver nanoparticles using marine algae Cladophora glomerata and evaluation of apoptotic effects in human colon cancer cells. Mater. Technol. (2020). https://doi.org/10.1080/10667857.2020.1863597

    Article  Google Scholar 

  21. L. Wang, T. Zhang, P. Li, W. Huang, J. Tang, P. Wang et al., Use of synchrotron radiation-analytical techniques to reveal chemical origin of silver-nanoparticle cytotoxicity. ACS Nano 9, 6532–6547 (2015)

    Article  CAS  Google Scholar 

  22. C. Marambio-Jones, E.M. Hoek, A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J. Nanopart. Res. 12, 1531–1551 (2010)

    Article  CAS  Google Scholar 

  23. S. Mahanta, S. Prathap, D.K. Ban, S. Paul, Protein functionalization of ZnO nanostructure exhibits selective and enhanced toxicity to breast cancer cells through oxidative stress-based cell death mechanism. J. Photochem. Photobiol. B 173, 376–388 (2017)

    Article  CAS  Google Scholar 

  24. J.H. Ahire, M. Behray, C.A. Webster, Q. Wang, V. Sherwood, N. Saengkrit et al., Synthesis of carbohydrate capped silicon nanoparticles and their reduced cytotoxicity, in vivo toxicity, and cellular uptake. Adv. Healthc. Mater. 4, 1877–1886 (2015)

    Article  CAS  Google Scholar 

  25. E. Panzarini, S. Mariano, C. Vergallo, E. Carata, G.M. Fimia, F. Mura et al., Glucose capped silver nanoparticles induce cell cycle arrest in HeLa cells. Toxicol. In Vitro 41, 64–74 (2017)

    Article  CAS  Google Scholar 

  26. R. Kalaiarasi, N. Jayallakshmi, P. Venkatachalam, Phytosynthesis of nanoparticles and its applications. Plant Cell Biotechnol. Mol. Biol. 11, 1–16 (2010)

    CAS  Google Scholar 

  27. O.V. Kharissova, H.R. Dias, B.I. Kharisov, B.O. Pérez, V.M.J. Pérez, The greener synthesis of nanoparticles. Trends Biotechnol. 31, 240–248 (2013)

    Article  CAS  Google Scholar 

  28. M. Ghanbari, F. Davar, A.E. Shalan, Effect of rosemary extract on the microstructure, phase evolution, and magnetic behavior of cobalt ferrite nanoparticles and its application on anti-cancer drug delivery. Ceram. Int. 47, 9409–9417 (2021)

    Article  CAS  Google Scholar 

  29. M. Loghman-Estarki, E.M. Sharifi, H. Sheikh, A. Alhaji, M. Naderi, Development of biocompatibility in the orthodontic brackets based on MgAl2O4/Si3N4 nanocomposites. Compos. B Eng. 173, 106989 (2019)

    Article  CAS  Google Scholar 

  30. S. Trivedi, M.A. Alshehri, C. Panneerselvam, H.A. Al-Aoh, F. Maggi, S. Sut et al., Insecticidal, antibacterial and dye adsorbent properties of Sargassum muticum decorated nano-silver particles. S. Afr. J. Bot. 139, 432–441 (2021)

    Article  CAS  Google Scholar 

  31. N. Khatoon, J.A. Mazumder, M. Sardar, Biotechnological applications of green synthesized silver nanoparticles. J. Nanosci. Curr. Res. 2, 107 (2017)

    Article  Google Scholar 

  32. A.J. Adur, N. Nandini, K.S. Mayachar, R. Ramya, N. Srinatha, Bio-synthesis and antimicrobial activity of silver nanoparticles using anaerobically digested parthenium slurry. J. Photochem. Photobiol. B 183, 30–34 (2018)

    Article  CAS  Google Scholar 

  33. M. Fernandez, R. Munoz-Olivas, J. Luque-Garcia, SILAC-based quantitative proteomics identifies size-dependent molecular mechanisms involved in silver nanoparticles-induced toxicity. Nanotoxicology 13, 812–826 (2019)

    Article  CAS  Google Scholar 

  34. P. Gopinath, S.K. Gogoi, P. Sanpui, A. Paul, A. Chattopadhyay, S.S. Ghosh, Signaling gene cascade in silver nanoparticle induced apoptosis. Colloids Surf. B 77, 240–245 (2010)

    Article  CAS  Google Scholar 

  35. D. Shahbazzadeh, H. Ahari, A. Motalebi, A. Anvar, S. Moaddab, T. Asadi et al., In vitro effect of nanosilver toxicity on fibroblast and mesenchymal stem cell lines. Iran. J. Fish. Sci. 10, 487–496 (2011)

    Google Scholar 

Download references

Acknowledgements

The authors would like to extend their sincere appreciation to the Director of NRME Research Laboratory, Newredmars Education Pvt Ltd for allowing to carry out the research work. The authors sincerely thank Saveetha Institute of Medical And Technical Sciences (Deemed-to-be University) for their support, encouragement, and extending all the necessary facilities in the university.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Diptikanta Acharya, Prathap Somu or Gitanjali Mishra.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acharya, D., Satapathy, S., Yadav, K.K. et al. Systemic Evaluation of Mechanism of Cytotoxicity in Human Colon Cancer HCT-116 Cells of Silver Nanoparticles Synthesized Using Marine Algae Ulva lactuca Extract. J Inorg Organomet Polym 32, 596–605 (2022). https://doi.org/10.1007/s10904-021-02133-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-02133-8

Keywords

Navigation