Skip to main content

Advertisement

Log in

Human Papillomavirus DNA and Oncogene Alterations in Colorectal Tumors

  • Published:
Pathology & Oncology Research

Abstract

The aim of the present study is to determine the presence and molecular integrity of high-risk HPV types in colorectal adenocarcinomas and to assess whether viral DNA is related to common proto-oncogene alterations, such as k-ras mutations and c-myc gene amplification, in colorectal cancer. Seventy-five colorectal adenocarcinomas were screened for HPV infection using nested-PCR (MY09/11-GP5+/6+). HPV typing was performed by type-specific PCR for HPV 16 and HPV 18 DNA. Unidentified samples were subsequently sequenced to determine the viral genotype. The physical status of HPV was determined by a nested PCR approach for type-specific E2 sequences. C-myc amplification was assessed by co-amplification with β-globin as control locus, and mutation in k-ras codons 12 and 13 by ARMS-PCR. Overall, HPV was detected in thirty-three colorectal specimens (44%). HPV 16 was the prevalent type (16/75), followed by HPV 18 (15/75), HPV 31 (1/75) and HPV 66 (1/75). E2 disruption was detected in 56.3% of HPV 16 and in 40% of HPV 18 positive tumors. C-myc amplification was detected in 29.4% of cases, while k-ras mutations in 30.7%. There was no significant trend for HPV infection in tumors harboring either k-ras or c-myc alterations. This study demonstrates HPV DNA and viral integration in colorectal tumors, suggesting a potential role of this virus in colorectal carcinogenesis. There was no concurrence, however, of k-ras and c-myc activation with viral infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Ferlay J, Bray F, Pisani P et al (2004) GLOBOCAN 2002: cancer incidence, mortality and prevalence worldwide, IARC CancerBase N° 5. IARC, Lyon

    Google Scholar 

  2. Beart RW (1995) Colon and rectum. In: Abeloff MD, Armitage JO, Allen SL, Niedehuber JE (eds) Clinical oncology. Churchill Livingstone, New York

    Google Scholar 

  3. Gazelle GS, McMahon PM, Scholz FJ (2001) Screening for colorectal cancer. Radiology 221:273–274

    Google Scholar 

  4. Vainio H, Miller AB (2003) Primary and secondary prevention in colorectal cancer. Acta Oncol 42:809–815

    Article  PubMed  Google Scholar 

  5. Bognár G, István G, Bereczky B et al (2008) Detection of human papillomavirus type 16 in squamous cell carcinoma of the colon and its lymph node metastases with PCS and southern blot hybridization. Pathol Oncol Res 14:93–96

    Article  PubMed  Google Scholar 

  6. Bodaghi S, Yamanegi K, Xiao SY (2005) Colorectal papillomavirus infection in patients with colorectal cancer. Clin Cancer Res 11:2862–2867

    Article  CAS  PubMed  Google Scholar 

  7. Yu HG, Shun LB, Luo HS et al (2002) Deletion of the FHIT gene in human colorectal cancer is independent of high-risk HPV infection. Int J Colorectal Dis 17:396–401

    Article  PubMed  Google Scholar 

  8. Damin DC, Caetano MB, Rosito MA et al (2007) Evidence for an association of human papillomavirus infection and colorectal cancer. Eur J Surg Oncol 33:569–574

    Article  CAS  PubMed  Google Scholar 

  9. Shah KV, Daniel RW, Simons JW et al (1992) Investigation of colon cancers for human papillomavirus genomic sequences by polymerase chain reaction. J Surg Oncol 51:5–7

    Article  CAS  PubMed  Google Scholar 

  10. Shroyer KR, Kim JG, Manos MM et al (1992) Papillomavirus found in anorectal squamous carcinoma, not in colon adenocarcinoma. Arch Surg 127:741–744

    CAS  PubMed  Google Scholar 

  11. zur Hausen H (1999) Viruses in human cancers. Eur J Cancer 35:1878–1885

    Article  PubMed  Google Scholar 

  12. Bosch FX, de Sanjosé S (2007) The epidemiology of human papillomavirus infection and cervical cancer. Dis Markers 23:213–227

    PubMed  Google Scholar 

  13. Giuliano AR, Tortolero-Luna G, Ferrer E et al (2008) Epidemiology of human papillomavirus infection in men, cancers other than cervical and benign conditions. Vaccine 26:17–28

    Article  Google Scholar 

  14. Ferber MJ, Montoya DP, Yu C et al (2003) Integrations of the hepatitis B virus (HBV) and human papillomavirus (HPV) into the human telomerase reverse transcriptase (hTERT) gene in liver and cervical cancers. Oncogene 22:3813–3820

    Article  CAS  PubMed  Google Scholar 

  15. Ferber MJ, Thorland EC, Brink AA et al (2003) Preferential integration of human papillomavirus type 18 near the c-myc locus in cervical carcinoma. Oncogene 22:7233–7242

    Article  CAS  PubMed  Google Scholar 

  16. Chakrabarti O, Krishna S (2003) Molecular interactions of ‘high risk’ human papillomaviruses E6 and E7 oncoproteins: implications for tumour progression. J Biosci 28:337–348

    Article  CAS  PubMed  Google Scholar 

  17. Pett MR, Pett MR, Alazawi WO et al (2004) Acquisition of high-level chromosomal instability is associated with integration of human papillomavirus type 16 in cervical keratinocytes. Cancer Res 64:1359–1368

    Article  CAS  PubMed  Google Scholar 

  18. Badaracco G, Venuti A, Sedati A et al (2002) HPV16 and HPV18 in genital tumors: significantly different levels of viral integration and correlation to tumor invasiveness. J Med Virol 67:574–582

    Article  CAS  PubMed  Google Scholar 

  19. Thorland EC, Myers SL, Gostout BS (2003) Common fragile sites are preferential targets for HPV16 integrations in cervical tumors. Oncogene 22:1225–1237

    Article  CAS  PubMed  Google Scholar 

  20. Ryan KM, Birnie GD (1996) Myc oncogenes: the enigmatic family. Biochem J 314:713–721

    CAS  PubMed  Google Scholar 

  21. Augenlicht LH, Wadler S, Corner G (1997) Low-level c-myc amplification in human colonic carcinoma cell lines and tumors: a frequent, p53-independent mutation associated with improved outcome in a randomized multi-institutional trial. Cancer Res 57:1769–1775

    CAS  PubMed  Google Scholar 

  22. Obara K, Yokoyama M, Asano G et al (2001) Evaluation of myc and chromosome 8 copy number in colorectal cancer using interphase cytogenetics. Int J Oncol 18:233–239

    CAS  PubMed  Google Scholar 

  23. Zaharieva B, Simon R, Ruiz C et al (2005) High-throughput tissue microarray analysis of CMYC amplification in urinary bladder cancer. Int J Cancer 117:952–956

    Article  CAS  PubMed  Google Scholar 

  24. Cheng JY, Meng CL, Chao CF et al (1991) Human papillomavirus type-related DNA and c-myc oncogene alterations in colon cancer cell lines. Dis Colon Rectum 34:469–474

    Article  CAS  PubMed  Google Scholar 

  25. Bos JL (1989) ras oncogenes in human cancer: a review. Cancer Res 49:4682–4689

    CAS  PubMed  Google Scholar 

  26. Vogelstein B, Fearon ER, Hamilton SR et al (1988) Genetic alterations during colorectal-tumor development. N Engl J Med 319:525–532

    Article  CAS  PubMed  Google Scholar 

  27. Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61:759–767

    Article  CAS  PubMed  Google Scholar 

  28. Buyru N, Tezol A, Dalay N (2006) Coexistence of K-ras mutations and HPV infection in colon cancer. BMC Cancer 6:115

    Article  PubMed  Google Scholar 

  29. Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16:1215

    Article  CAS  PubMed  Google Scholar 

  30. Evander M, Edlund K, Bodén E et al (1992) Comparison of one-step and two-step polymerase chain reaction with degenerate general primers in a population-based studies of human papillomavirus infection in young Swedish women. J Clin Microbiol 30:987–992

    CAS  PubMed  Google Scholar 

  31. de Roda Husman AM, Walboomers JM, van den Brule AJ et al (1995) The use of general primers GP5 and GP6 elongated at their 3′ ends with adjacent highly conserved sequences improves human papillomavirus detection by PCR. J Gen Virol 76:1057–1062

    Article  PubMed  Google Scholar 

  32. Lönn U, Lönn S, Nilsson B et al (1995) Prognostic value of erb-B2 and myc amplification in breast cancer imprints. Cancer 75:2681–2687

    Article  PubMed  Google Scholar 

  33. Hatzaki A, Razi E, Anagnostopoulou K et al (2001) A modified mutagenic PCR-RFLP method for K-ras codon 12 and 13 mutations detection in NSCLC patients. Mol Cell Probes 15:243–247

    Article  CAS  PubMed  Google Scholar 

  34. Ilyas M, Straub J, Tomlinson IP et al (1999) Genetic pathways in colorectal and other cancers. Eur J Cancer 35:1986–2002

    Article  CAS  PubMed  Google Scholar 

  35. Perez LO, Abba MC, Laguens RM et al (2005) Analysis of adenocarcinoma of the colon and rectum: detection of human papillomavirus (HPV) DNA by polymerase chain reaction. Colorectal Dis 7:492–495

    Article  CAS  PubMed  Google Scholar 

  36. Lee YM, Leu SY, Chiang H et al (2001) Human papillomavirus type 18 in colorectal cancer. J Microbiol Immunol Infect 34:87–91

    CAS  PubMed  Google Scholar 

  37. Erisman MD, Rothberg PG, Diehl RE et al (1985) Deregulation of c-myc gene expression in human colon carcinoma is not accompanied by amplification or rearrangement of the gene. Mol Cell Biol 5:1969–1976

    CAS  PubMed  Google Scholar 

  38. He QJ, Zeng WF, Sham JS et al (2003) Recurrent genetic alterations in 26 colorectal carcinomas and 21 adenomas from Chinese patients. Cancer Genet Cytogenet 144:112–118

    Article  CAS  PubMed  Google Scholar 

  39. Knösel T, Petersen S, Schwabe H et al (2002) Incidence of chromosomal imbalances in advanced colorectal carcinomas and their metastases. Virchows Arch 440:187–194

    Article  PubMed  Google Scholar 

  40. Al-Kuraya K, Novotny H, Bavi P et al (2007) HER2, TOP2A, CCND1, EGFR and C-MYC oncogene amplification in colorectal cancer. J Clin Pathol 60:768–772

    Article  CAS  PubMed  Google Scholar 

  41. He TC, Sparks AB, Rago C et al (1998) Identification of c-MYC as a target of the APC pathway. Science 281:1509–1512

    Article  CAS  PubMed  Google Scholar 

  42. Herrick J, Conti C, Teissier S et al (2005) Genomic organization of amplified MYC genes suggests distinct mechanisms of amplification in tumorigenesis. Cancer Res 65:1174–1179

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank continuous support from IGEVET-CONICET and especially Dr. Silvina Díaz for technical support in cloning the HPV genomes. This work was partially funded by grant PICT 20149, ANPCyT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Orlando Pérez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez, L.O., Barbisan, G., Ottino, A. et al. Human Papillomavirus DNA and Oncogene Alterations in Colorectal Tumors. Pathol. Oncol. Res. 16, 461–468 (2010). https://doi.org/10.1007/s12253-010-9246-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-010-9246-x

Keywords

Navigation