Skip to main content

Advertisement

SpringerLink
  • Virologica Sinica
  • Journal Aims and Scope
Extracellular vesicles: novel vehicles in herpesvirus infection
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Exosomal transmission of viruses, a two-edged biological sword

23 January 2023

Narges Mardi, Sanya Haiaty, … Mohammad Nouri

The versatile role of exosomes in human retroviral infections: from immunopathogenesis to clinical application

15 January 2021

Jafar Rezaie, Cynthia Aslan, … Reza Jafari

Intricate relationships between naked viruses and extracellular vesicles in the crosstalk between pathogen and host

22 May 2018

Susanne G. van der Grein, Kyra A. Y. Defourny, … Esther N. M. Nolte-‘t Hoen

Epstein–Barr virus tegument protein BGLF2 in exosomes released from virus-producing cells facilitates de novo infection

21 June 2022

Yoshitaka Sato, Masahiro Yaguchi, … Hiroshi Kimura

Remodeling of host membranes during herpesvirus assembly and egress

21 September 2018

Ying Lv, Sheng Zhou, … Hongyu Deng

Role of Exosomes in Human Retroviral Mediated Disorders

14 April 2018

Monique Anderson, Fatah Kashanchi & Steven Jacobson

Viral journeys on the intracellular highways

24 July 2018

Makeda Robinson, Stanford Schor, … Shirit Einav

Rab27b regulates extracellular vesicle production in cells infected with Kaposi’s sarcoma-associated herpesvirus to promote cell survival and persistent infection

20 April 2021

Hyungtaek Jeon, Su-Kyung Kang, … Myung-Shin Lee

Intercellular transmission of Seneca Valley virus mediated by exosomes

16 July 2020

Guowei Xu, Shouxing Xu, … Xiangtao Liu

Download PDF
  • Review
  • Open Access
  • Published: 30 October 2017

Extracellular vesicles: novel vehicles in herpesvirus infection

  • Lingzhi Liu1,2,4,
  • Quan Zhou3,
  • Yan Xie1,2,4,
  • Lielian Zuo1,2,4,
  • Fanxiu Zhu1,5 &
  • …
  • Jianhong Lu  ORCID: orcid.org/0000-0002-4436-12171,2,4 

Virologica Sinica volume 32, pages 349–356 (2017)Cite this article

  • 1065 Accesses

  • 21 Citations

  • 2 Altmetric

  • Metrics details

Abstract

Herpesviruses are remarkable pathogens that have evolved multiple mechanisms to evade host immunity, ensuring their proliferation and egress. Among these mechanisms, herpesviruses utilize elaborate extracellular vesicles, including exosomes, for the intricate interplay between infected host and recipient cells. Herpesviruses incorporate genome expression products and direct cellular products into exosomal cargoes. These components alter the content and function of exosomes released from donor cells, thus affecting the downstream signalings of recipient cells. In this way, herpesviruses hijack exosomal pathways to ensure their survival and persistence, and exosomes are emerging as critical mediators for virus infection-associated intercellular communication and microenvironment alteration. In this review, the function and effects of exosomes in herpesvirus infection will be discussed, so that we will have a better understanding about the pathogenesis of herpesviruses.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  • Agut H, Bonnafous P, Gautheretdejean A. 2015. Laboratory and clinical aspects of human herpesvirus 6 infections. Clin Microbiol Rev, 28: 313–335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmed W, Philip PS, Attoub S, Khan G. 2015. Epstein-Barr virus infected cells release Fas-ligand in exosomal fractions and induce apoptosis in recipient cells via the extrinsic pathway. J Gen Virol, 96: 3646–3659.

    Article  CAS  PubMed  Google Scholar 

  • Akers JC, Gonda D, Kim R, Carter BS, Chen CC. 2013. Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J Neurooncol, 113: 1–11.

    Article  PubMed  PubMed Central  Google Scholar 

  • Akinyi B, Odhiambo C, Otieno F, Inzaule S, Oswago S, Kerubo E, Ndivo R, Zeh C. 2017. Prevalence, incidence and correlates of HSV-2 infection in an HIV incidence adolescent and adult cohort study in western Kenya. PloS One, 12: e0178907.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Anderson MR, Kashanchi F, Jacobson S. 2016. Exosomes in Viral Disease. Neurotherapeutics, 13: 535–546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnold N, Messaoudi I. 2017. Simian varicella virus causes robust transcriptional changes in T cells that support viral replication. Virus Res, 238: 226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baglio SR, van Eijndhoven MA, Koppers-Lalic D, Berenguer J, Lougheed SM, Gibbs S, Léveillé N, Rinkel RN, Hopmans ES, Swaminathan S. 2016. Sensing of latent EBV infection through exosomal transfer of 5’pppRNA. Proc Natl Acad Sci U S A, 113: E587–E596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calistri A, Sette P, Salata C, Cancellotti E, Forghieri C, Comin A, Göttlinger H, Campadellifiume G, Palù G, Parolin C. 2007. Intracellular Trafficking and Maturation of Herpes Simplex Virus Type 1 gB and Virus Egress Require Functional Biogenesis of Multivesicular Bodies. J Virol, 81: 11468–11478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cepeda V, Esteban M, Fraileramos A. 2010. Human cytomegalovirus final envelopment on membranes containing both trans-Golgi network and endosomal markers. Cell Microbiol, 12: 386–404.

    Article  CAS  PubMed  Google Scholar 

  • Chan T, Barra NG, Lee AJ, Ashkar AA. 2011. Innate and adaptive immunity against herpes simplex virus type 2 in the genital mucosa. J Reprod Immunol, 88: 210–218.

    Article  CAS  PubMed  Google Scholar 

  • Choi UY, Park A, Jung JU. 2017. Double the Trouble When Herpesviruses Join Hands. Cell Host Microbe, 22: 5–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chugh PE, Sin SH, Ozgur S, Henry DH, Menezes P, Griffith J, Eron JJ, Damania B, Dittmer DP. 2013. Systemically Circulat-ing Viral and Tumor-Derived MicroRNAs in KSHV-Associated Malignancies. PloS Pathog, 9: e1003484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crump CM, Yates C, Minson T. 2007. Herpes Simplex Virus Type 1 Cytoplasmic Envelopment Requires Functional Vps4. J Virol, 81: 7380–7387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding L, Li L, Yang J, Zhou S, Li W, Tang M, Shi Y, Yi W, Cao Y. 2010. Latent membrane protein 1 encoded by Epstein-Barr virus induces telomerase activity via p16INK4A/Rb/E2F1 and JNK signaling pathways. J Med Virol, 79: 1153–1163.

    Article  CAS  Google Scholar 

  • Dolcetti R. 2015. Cross-talk between Epstein-Barr virus and microenvironment in the pathogenesis of lymphomas. Semin Cancer Biol, 34: 58–69.

    Article  CAS  PubMed  Google Scholar 

  • Dreyfus DH. 2013. Herpesviruses and the microbiome. J Allergy Clin Immunol, 132: 1278–1286.

    Article  CAS  PubMed  Google Scholar 

  • Duijvesz D, Luider T, Bangma CH, Jenster G. 2011. Exosomes as biomarker treasure chests for prostate cancer. Eur Urol, 59: 823–831.

    Article  CAS  PubMed  Google Scholar 

  • Fraile-Ramos A, Pelchen-Matthews A, Risco C, Rejas MT, Emery VC, Hassan-Walker AF, Esteban M, Marsh M. 2007. The ESCRT machinery is not required for human cytomegalovirus envelopment. Cell Microbiol, 9: 2955–2967.

    Article  CAS  PubMed  Google Scholar 

  • Gallo A, Vella S, Miele M, Timoneri F, Di BM, Bosi S, Sciveres M, Conaldi PG. 2016. Global profiling of viral and cellular noncoding RNAs in Epstein-Barr virus-induced lymphoblastoid cell lines and released exosome cargos. Cancer Lett, 388: 334–343.

    Article  PubMed  CAS  Google Scholar 

  • Han Z, Liu X, Chen X, Zhou X, Du T, Roizman B, Zhou G. 2016. miR-H28 and miR-H29 expressed late in productive infection are exported and restrict HSV-1 replication and spread in recipient cells. Proc Natl Acad Sci U S A, 113: E894–E901.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hancock MH, Skalsky RL. 2017. Roles of Non-coding RNAs During Herpesvirus Infection. DOI: 10.1007/82_2017_31.

    Book  Google Scholar 

  • Hogue IB, Scherer J, Enquist LW. 2016. Exocytosis of Alphaherpesvirus Virions, Light Particles, and Glycoproteins Uses Constitutive Secretory Mechanisms. Mbio, 7: e00820–e00816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hudson AW. 2014. Roseoloviruses and their modulation of host defenses. Curr Opin Virol, 9: 178–187.

    Article  CAS  PubMed  Google Scholar 

  • Hurley JH. 2015. ESCRTs are everywhere. EMBO J, 34: 2398–2407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hurwitz SN, Nkosi D, Conlon MM, York SB, Liu X, Tremblay DC, Meckes DG Jr. 2016. CD63 regulates Epstein-Barr virus LMP1 exosomal packaging, enhancement of vesicle production, and non-canonical NF-kB signaling. J Virol, 91. pii: e02251–16.

    Google Scholar 

  • Iwakiri D. 2015. Multifunctional non-coding Epstein-Barr virus encoded RNAs (EBERs) contribute to viral pathogenesis. Virus Res, 212: 30–38.

    Article  PubMed  CAS  Google Scholar 

  • Jia S, Zhai H, Zhao M. 2014. MicroRNAs regulate immune system via multiple targets. Discov Med, 18: 237–247.

    PubMed  Google Scholar 

  • Meckes DG Jr. 2015. Exosomal Communication Goes Viral. J Virol, 89: 5200–5203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meckes DG Jr, Gunawardena HP, Dekroon RM, Heaton PR, Edwards RH, Ozgur S, Griffith JD, Damania B, Raab-Traub N. 2013. Modulation of B-cell exosome proteins by gamma herpesvirus infection. Proc Natl Acad Sci U S A, 110: 2925–2933.

    Article  Google Scholar 

  • Kalamvoki M, Deschamps T. 2016. Extracellular vesicles during Herpes Simplex Virus type 1 infection: an inquire. Virol J, 13: 1–12.

    Article  CAS  Google Scholar 

  • Kalamvoki M, Du T, Roizman B. 2014. Cells infected with herpes simplex virus 1 export to uninfected cells exosomes containing STING, viral mRNAs, and microRNAs. Proc Natl Acad Sci U S A, 111: E4991–E4996.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Knipe DM, Raja P, Lee J. 2017. Viral gene products actively promote latent infection by epigenetic silencing mechanisms. Curr Opin Infect Dis, 23: 68–74.

    CAS  Google Scholar 

  • Kurapati S, Sadaoka T, Rajbhandari L, Jagdish B, Shukla P, Kim YJ, Lee G, Cohen JI, Venkatesan A. 2017. Role of JNK pathway in varicella-zoster virus lytic infection and reactivation. J Virol. pii: e00640–17.

    Google Scholar 

  • Lee AJ, Ashkar AA. 2012. Herpes simplex virus-2 in the genital mucosa: insights into the mucosal host response and vaccine development. Curr Opin Infect Dis, 25: 92–99.

    Article  CAS  PubMed  Google Scholar 

  • Lee Y, El AS, Wood MJ. 2012. Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy. Hum Mol Genet, 21: 125–134.

    Article  CAS  Google Scholar 

  • Li L, Chen XP, Li YJ. 2010. MicroRNA-146a and human disease. Scand J Immunol, 71: 227–231.

    Article  CAS  PubMed  Google Scholar 

  • Li L, Li Z, Zhou S, Xiao L, Guo L, Tao Y, Tang M, Shi Y, Li W, Yi W. 2007. Ubiquitination of MDM2 modulated by Epstein-Barr virus encoded latent membrane protein 1. Virus Res, 130: 275–280.

    Article  CAS  PubMed  Google Scholar 

  • Lin Z, Swan K, Zhang X, Cao S, Brett Z, Drury S, Strong MJ, Fewell C, Puetter A, Wang X. 2016. Secreted Oral Epithelial Cell Membrane Vesicles Induce Epstein-Barr Virus Reactivation in Latently Infected B Cells. J Virol, 90: 3469–3479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lo AKF, Dawson CW, Young LS, Lo KW. 2017. The role of Metabolic Reprogramming in γ-Herpesvirus-associated Oncogenesis. Int J Cancer, 141: 1512–1521.

    Article  CAS  PubMed  Google Scholar 

  • Miettinen JJ, Matikainen S, Nyman TA. 2012. Global Secretome Characterization of Herpes Simplex Virus 1-Infected Human Primary Macrophages. J Virol, 86: 12770–12778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mori Y, Koike M, Moriishi E, Kawabata A, Tang H, Oyaizu H, Uchiyama Y, Yamanishi K. 2008. Human herpesvirus-6 induces MVB formation, and virus egress occurs by an exosomal release pathway. Traffic, 9: 1728–1742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olsson J, Kok E, Adolfsson R, Lövheim H, Elgh F. 2017. Herpes virus seroepidemiology in the adult Swedish population. Immun Ageing, 14: 10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ota M, Serada S, Naka T, Mori Y. 2014. MHC class I molecules are incorporated into human herpesvirus-6 viral particles and released into the extracellular environment. Microbiol Immunol, 58: 119–125.

    Article  CAS  PubMed  Google Scholar 

  • Parra M, Alcala A, Amoros C, Baeza A, Galiana A, Tarragó D, García-Quesada MÁ, Sánchez-Hellín V. 2017. Encephalitis associated with human herpesvirus-7 infection in an immunocompetent adult. Virol J, 14: 97.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pawliczek T, Crump CM. 2009. Herpes Simplex Virus Type 1 Production Requires a Functional ESCRT-III Complex but Is Independent of TSG101 and ALIX Expression. J Virol, 83: 11254–11264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pegtel DM. 2013. Oncogenic herpesviruses sending mixed signals. Proc Natl Acad Sci U S A, 110: 12503–12504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Purushothaman P, Dabral P, Gupta N, Sarkar R, Verma SC. 2016. KSHV Genome Replication and Maintenance. Front Microbiol, 7: 54.

    Article  PubMed  PubMed Central  Google Scholar 

  • Riva N, Franconi I, Meschiari M, Franceschini E, Puzzolante C, Cuomo G, Bianchi A, Cavalleri F, Genovese M, Mussini C. 2017. Acute human herpes virus 7 (HHV-7) encephalitis in an immunocompetent adult patient: a case report and review of literature. Infection, 45: 1–4.

    Article  Google Scholar 

  • Sotelo JR, Porter KR. 1959. An Electron Microscope Study of the Rat Ovum. J Biophys Biochem Cytol, 5: 327–342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sullivan BM, Coscoy L. 2010. The U24 protein from human herpesvirus 6 and 7 affects endocytic recycling. J Virol, 84: 1265–1275.

    Article  CAS  PubMed  Google Scholar 

  • Szatanek R, Bajkrzyworzeka M, Zimoch J, Lekka M, Siedlar M, Baran J. 2017. The Methods of Choice for Extracellular Vesicles (EVs) Characterization. Int J Mol Sci, 18. pii: E1153.

    Article  PubMed  CAS  Google Scholar 

  • Tandon R, Aucoin DP, Mocarski ES. 2009. Human Cytomegalovirus Exploits ESCRT Machinery in the Process of Virion Maturation. J Virol, 83: 10797–10807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Temme S, Eis-Hübinger AM, Mclellan AD, Koch N. 2010. The herpes simplex virus-1 encoded glycoprotein B diverts HLADR into the exosome pathway. J Immunol, 184: 236–243.

    Article  CAS  PubMed  Google Scholar 

  • Thakker S, Verma SC. 2016. Co-infections and Pathogenesis of KSHV-Associated Malignancies. Front Microbiol, 7: 151.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tkach M, Théry C. 2016. Communication by Extracellular Vesicles: Where We Are and Where We Need to Go. Cell, 164: 1226.

    Article  CAS  PubMed  Google Scholar 

  • van Diemen FR, Lebbink RJ. 2016. CRISPR/Cas9, a powerful tool to target human herpesviruses. Cellular Microbiology. DOI: 10.1111/cmi.12694.

    Google Scholar 

  • Veettil MV, Bandyopadhyay C, Dutta D, Chandran B. 2014. Interaction of KSHV with host cell surface receptors and cell entry. Viruses, 6: 4024–4046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker JD, Maier CL, Pober JS. 2009. Cytomegalovirus-infected human endothelial cells can stimulate allogeneic CD4+ memory T cells by releasing antigenic exosomes. J Immunol, 182: 1548–1559.

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Sun X, Zhao J, Yang Y, Cai X, Xu J, Cao P. 2017. Exosomes: A Novel Strategy for Treatment and Prevention of Diseases. Front Pharmacol, 8: 300.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yoon C, Kim J, Park G, Kim S, Kim D, Hur DY, Kim B, Kim YS. 2016. Delivery of miR-155 to retinal pigment epithelial cells mediated by Burkitt’s lymphoma exosomes. Tumor Biol, 37: 313–321.

    Article  CAS  Google Scholar 

  • Zhang J, Zhu L, Lu X, Feldman ER, Keyes LR, Wang Y, Fan H, Feng H, Xia Z, Sun J. 2015a. Recombinant Murine Gamma Herpesvirus 68 Carrying KSHV G Protein-Coupled Receptor Induces Angiogenic Lesions in Mice. PloS Pathog, 11: e1005001.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang X, Yuan X, Shi H, Wu L, Qian H, Xu W. 2015b. Exosomes in cancer: small particle, big player. J Hematol Oncol, 8: 83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zheng H, Li L, Hu D, Deng X, Cao Y. 2007. Role of Epstein-Barr Virus Encoded Latent Membrane Protein 1 in the Carcinogenesis of Nasopharyngeal Carcinoma. Cell Mol Immunol, 4: 185–196.

    CAS  PubMed  Google Scholar 

  • Zheng Y, Zhang W, Ye Q, Zhou Y, Xiong W, He W, Deng M, Zhou M, Guo X, Chen P. 2012. Inhibition of Epstein-Barr Virus Infection by Lactoferrin. J Innate Immun, 4: 387–398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Y, Yan Y, Guo J, Ying D, Ye L, Qiu J, Zeng Z, Wu X, Xing Y, Xiang L. 2017. Ex vivo2D and 3D HSV-2 infection model using human normal vaginal epithelial cells. Oncotarget, 8: 15267–15282.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zuo L, Yu H, Liu L, Tang Y, Wu H, Jing Y, Zhu M, Du S, Lian Z, Li C. 2015. The copy number of Epstein-Barr virus latent genome correlates with the oncogenicity by the activation level of LMP1 and NF-kB. Oncotarget, 6: 41033–41044.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zuo L, Yue W, Du S, Xin S, Zhang J, Liu L, Li G, Lu J. 2017. An update: Epstein-Barr virus and immune evasion via microRNA regulation. Virol Sin, 32: 175–187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundations of China (81372139, 31670171, 81728011), the National Key Research and Development Program of China (2017YFC1200204), the Hunan Provincial Natural Science Foundation of China (2015JJ2149).

Author information

Authors and Affiliations

  1. The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, 410080, China

    Lingzhi Liu, Yan Xie, Lielian Zuo, Fanxiu Zhu & Jianhong Lu

  2. Cancer Research Institute, Central South University, Changsha, 410078, China

    Lingzhi Liu, Yan Xie, Lielian Zuo & Jianhong Lu

  3. Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian, 116024, China

    Quan Zhou

  4. Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, China

    Lingzhi Liu, Yan Xie, Lielian Zuo & Jianhong Lu

  5. Department of Biological Science, Florida State University, Tallahassee, 32306, USA

    Fanxiu Zhu

Authors
  1. Lingzhi Liu
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Quan Zhou
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Yan Xie
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Lielian Zuo
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Fanxiu Zhu
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. Jianhong Lu
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Jianhong Lu.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Zhou, Q., Xie, Y. et al. Extracellular vesicles: novel vehicles in herpesvirus infection. Virol. Sin. 32, 349–356 (2017). https://doi.org/10.1007/s12250-017-4073-9

Download citation

  • Received: 23 August 2017

  • Accepted: 09 October 2017

  • Published: 30 October 2017

  • Issue Date: October 2017

  • DOI: https://doi.org/10.1007/s12250-017-4073-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • herpesviruses
  • extracellular vesicles (EVs)
  • infection
  • pathogenesis
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.