Skip to main content
Log in

Formulation, Characterization, Optimization, and Pharmacokinetic Evaluation of Cilnidipine-Loaded Liquisolid Compacts with Improved Dissolution and Bioavailability

  • Original Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Purpose

Cilnidipine (BCS class II drug) is a calcium channel blocker used in the treatment of hypertension. Poor water solubility, unreliable oral absorption, and poor bioavailability make it a probable candidate for designing novel drug delivery. The objective of the present investigation was to formulate, optimize, and study in vitro and in vivo performance of cilnidipine-loaded liquisolid compacts.

Methods

Solid-state characterization was performed by FTIR, DSC, SEM, and XRD. Preliminary screening was performed to select non-volatile solvent, carrier, and coating material based on flowable liquid retention potential. Liquisolid compacts were optimized using 32 factorial designs and were studied for pre- and post-compression parameters, in vitro dissolution, dissolution validation, and pharmacokinetic and stability studies, whereas bioanalysis was carried out using HPLC–MS/Ms method.

Results

In the preformulation study, Transcutol HP was selected as the non-volatile solvent, and Neusilin US2 and Cab-o-sil were selected as the carrier and coating material, respectively, exhibiting compatibility with the drug. Liquisolid compacts were found to be compressible with the selected composition. In vitro studies indicated increased dissolution behaviour, whereas in vivo studies demonstrated improved bioavailability compared to the pure drug and marketed formulation.

Conclusion

In conclusion, formulated liquisolid compacts demonstrated increased dissolution and bioavailability making the formulation suitable for oral administration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Anand O, Yu LX, Conner DP, Davit BM. Dissolution testing for generic drugs: An FDA perspective. AAPS J. 2011;328–35. 2011;13:328. https://doi.org/10.1208/s12248-011-9272-y.

  2. Gao L, Liu G, Ma J, Wang X, Zhou L, Li X, Wang F. Application of Drug Nanocrystal Technologies on Oral Drug Delivery of Poorly Soluble Drugs. Pharmaceutical Research. 2013;30(2):307–24. https://doi.org/10.1007/s11095-012-0889-z.

    Article  CAS  PubMed  Google Scholar 

  3. Ashri NY, Abdel-Rehim M. Sample treatment based on extraction techniques in biological matrices. Bioanalysis. 2011;3(17):2003–18. https://doi.org/10.4155/bio.11.201.

  4. Thakur RS, Nayaz A, Koushik Y. Formulation and evaluation of solubility enhanced ciprofloxacin. Int J Pharm Sci Nanotechnol. 2013;6:2131–6.

    Google Scholar 

  5. Maheshwari RK, Jain R, George P, Road P, Pradesh M. Formulation development and evaluation of controlled release tablets of lamotrigine using. Bull Pharm Res. 2015;5:14–9.

    CAS  Google Scholar 

  6. Vasconcelos T, Sarmento B, Costa P. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov Today. 2007;23–24:1068–75. https://doi.org/10.1016/j.drudis.2007.09.005.

  7. Sultana S, Halder S, Lutful Kabir AK, Rouf ASS. Effect of solubility enhancers on the release of carbamazepine from hydrophilic polymer based matrix tablet. Dhaka Univ J Pharm Sci. 2014;13:167–73.

    Google Scholar 

  8. Wadhwa J, Nair A, Kumria R. Emulsion forming drug delivery system for lipophilic drugs. Acta Pol Pharm - Drug Res. 2012;69:179–91.

    CAS  Google Scholar 

  9. Chaumeil JC. Micronization: a method of improving the bioavailability of poorly soluble drugs. Methods Find Exp Clin Pharmacol. 1998;20:211–5.

    CAS  PubMed  Google Scholar 

  10. Miyaji T, Inoue Y, Acarturk F, Imai T, Otagiri M, Uekama K. Improvement of oral bioavability of fenbufen by cyclodextrin complexations. Acta Pharm Nord. 1992;4:17–22.

    CAS  PubMed  Google Scholar 

  11. Hirayama F, Usami M, Kimura K, Uekama K. Crystallization and polymorphic transition behavior of chloramphenicol palmitate in 2-hydroxypropyl-β-cyclodextrin matrix. Eur J Pharm Sci. 1997;5:23–30.

    CAS  Google Scholar 

  12. Deshmane S, Deshmane S, Shelke S, Biyani K. Enhancement of solubility and bioavailability of ambrisentan by solid dispersion using Daucus carota as a drug carrier: formulation, characterization, in vitro, and in vivo study. Drug Dev Ind Pharm. 2018;44(6):1001–11.

    CAS  PubMed  Google Scholar 

  13. Wang D, Xing H, Jiang J, Chen X, Yang T, Wang D, et al. Liquisolid technique and its applications in pharmaceutics. Asian J Pharm Sci. 2017;12(2):115–23. https://doi.org/10.1016/j.ajps.2016.09.007.

  14. Serajuddin ATM. Salt formation to improve drug solubility. Adv Drug Deliv Rev. 2007;59(7):603–16. https://doi.org/10.1016/j.addr.2007.05.010.

  15. Javadzadeh Y, Siahi-Shadbad MR, Barzegar-Jalali M, Nokhodchi A. Enhancement of dissolution rate of piroxicam using liquisolid compacts. Farmaco. 2005;60:361–5.

    CAS  PubMed  Google Scholar 

  16. Nokhodchi A, Javadzadeh Y, Siahi-Shadbad MR, Barzegar-Jalali M. The effect of type and concentration of vehicles on the dissolution rate of a poorly soluble drug (indomethacin) from liquisolid compacts. J Pharm Pharm Sci. 2005;8:18–25.

    CAS  PubMed  Google Scholar 

  17. Nokhodchi A, Hentzschel CM, Leopold CS. Drug release from liquisolid systems: speed it up, slow it down. Expert Opin Drug Deliv. 2011;8(2)191–205. https://doi.org/10.1517/17425247.2011.548801.

  18. Javadzadeh Y, Jafari-Navimipour B, Nokhodchi A. Liquisolid technique for dissolution rate enhancement of a high dose water-insoluble drug (carbamazepine). Int J Pharm. 2007;341:26–34.

    CAS  PubMed  Google Scholar 

  19. Gubbi SR, Jarag R. Formulation and characterization of atorvastatin calcium liquisolid compacts. Asian J Pharm Sci. 2010;5:50–60.

    Google Scholar 

  20. Karmarkar AB, Gonjar ID, Hosmani AH, Dhabale PN, Bhise SB. Dissolution rate enhancement of fenofibrate using liquisolid tablet technique. Lat Am J Pharm. 2009;28:219–25.

    CAS  Google Scholar 

  21. Kamble PR, Shaikh KS, Chaudhari PD. Application of liquisolid technology for enhancing solubility and dissolution of rosuvastatin. Adv Pharm Bull. 2014;4:197–204.

    PubMed  Google Scholar 

  22. Singh B, Ahuja N. Development of controlled-release buccoadhesive hydrophilic matrices of diltiazem hydrochloride: optimization of bioadhesion, dissolution, and diffusion parameters. Drug Dev Ind Pharm. 2002;28:431–42.

    CAS  PubMed  Google Scholar 

  23. Shelke S, Shahi S, Jadhav K, Dhamecha D, Tiwari R, Patil H. Thermoreversible nanoethosomal gel for the intranasal delivery of Eletriptan hydrobromide. J Mater Sci Mater Med. 2016;27(6):1–3. https://doi.org/10.1007/s10856-016-5713-6.

  24. Ram CVS. Hypertension, possible vascular protection and lercanidipine. Expert Rev Cardiovasc Ther. 2006;4:783–8.

    PubMed  Google Scholar 

  25. Kitahara Y, Saito F, Akao M, Fujita H, Takahashi A, Taguchi H, et al. Effect of morning and bedtime dosing with cilnidipine on blood pressure, heart rate, and sympathetic nervous activity in essential hypertensive patients. J Cardiovasc Pharmacol. 2004;43:68–73.

    CAS  PubMed  Google Scholar 

  26. Minami J, Kawano Y, Makino Y, Matsuoka H, Takishita S. Effects of cilnidipine, a novel dihydropyridine calcium antagonist, on autonomic function, ambulatory blood pressure and heart rate in patients with essential hypertension. Br J Clin Pharmacol. 2000;50:615–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Narita S, Yoshioka Y, Ide A, Kadokami T, Momii H, Yoshida M, et al. Effects of the L/N-type calcium channel antagonist cilnidipine on morning blood pressure control and peripheral edema formation. J Am Soc Hypertens. 2011;5:410–6.

    CAS  PubMed  Google Scholar 

  28. Kai T, Kuzumoto Y. Effects of a dual LN-type calcium channel blocker cilnidipine on blood pressure, pulse rate, and autonomic functions in patients with mild to moderate hypertension. Clin Exp Hypertens. 2009;31:595–604.

    CAS  PubMed  Google Scholar 

  29. Konda T, Enomoto A, Takahara A, Yamamoto H. Effects of L/N-type calcium channel antagonist, cilnidipine on progressive renal injuries in Dahl salt-sensitive rats. Biol Pharm Bull. 2006;29:933–7.

    CAS  PubMed  Google Scholar 

  30. Uesawa Y, Mohri K. Relationship between lipophilicities of 1,4-dihydropyridine derivatives and pharmacokinetic interaction strengths with grapefruit juice. Yakugaku Zasshi. 2008;128:117–22.

    CAS  PubMed  Google Scholar 

  31. Liu XQ, Zhao Y, Li D, Qian ZY, Wang GJ. Metabolism and metabolic inhibition of cilnidipine in human liver microsomes. Acta Pharmacol Sin. 2003;24:263–8.

    CAS  PubMed  Google Scholar 

  32. Hu L, Zhang H, Song W, Gu D, Hu Q. Investigation of inclusion complex of cilnidipine with hydroxypropyl- β-cyclodextrin. Carbohydr Polym. 2012;90:1719–24.

    CAS  PubMed  Google Scholar 

  33. Hu L, Song W, Niu F, Jiao K, Jia Z. Preparation, characterization and tableting of cilnidipine solid dispersions. Pak J Pharm Sci. 2013;26:629–36.

    Google Scholar 

  34. Bakhle SS, Avari JG. Development and characterization of solid self-emulsifying drug delivery system of cilnidipine. Chem Pharm Bull. 2015;63:408–17.

    CAS  Google Scholar 

  35. Upadhay M. Preparation and evaluation of cilnidipine microemulsion. J Pharm Bioallied Sci. 2012;4(Suppl 1): S114. https://doi.org/10.4103/0975-7406.94162.

  36. Shelke S, Shahi S, Jalalpure S, Dhamecha D. Poloxamer 407-based intranasal thermoreversible gel of zolmitriptan-loaded nanoethosomes: formulation, optimization, evaluation and permeation studies. J Liposome Res. 2016;2104:1–11.

    Google Scholar 

  37. Deshmane S, Deshmane S, Shelke S, Biyani K. Enhancement of solubility and bioavailability of ambrisentan by solid dispersion using Daucus carota as a drug carrier: formulation, characterization, in vitro, and in vivo study. Drug Dev Ind Pharm. 2018;44:1001–11.

    CAS  PubMed  Google Scholar 

  38. Tayel SA, Soliman II, Louis D. Improvement of dissolution properties of Carbamazepine through application of the liquisolid tablet technique. Eur J Pharm Biopharm. 2008;69:342–7.

    CAS  PubMed  Google Scholar 

  39. Fahmy RH, Kassem MA. Enhancement of famotidine dissolution rate through liquisolid tablets formulation: in vitro and in vivo evaluation. Eur J Pharm Biopharm. 2008;69:993–1003.

    CAS  PubMed  Google Scholar 

  40. Shelke S, Pathan I, Shinde G, Agrawal G, Damale M, Chouthe R, et al. Poloxamer-based in situ nasal gel of naratriptan hydrochloride deformable vesicles for brain targeting. Bionanoscience. 2020;10:633–48.

    Google Scholar 

  41. Sanka K, Poienti S, Mohd AB, Diwan PV. Improved oral delivery of clonazepam through liquisolid powder compact formulations: in-vitro and ex-vivo characterization. Powder Technol. 2014;256:336–44.

    CAS  Google Scholar 

  42. Costa P, Sousa Lobo JM. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13(2):123–33. https://doi.org/10.1016/S0928-0987(01)00095-1.

  43. Farina P, Targa G, Leoni B, Tajana A. Pharmacokinetics of lercanidipine in animals. J Cardiovasc Pharmacol. 1997;29:S86–S96.

  44. Chopra K. Fundamentals of experimental pharmacology. Indian J Pharmacol. 2020;52:443.

    PubMed Central  Google Scholar 

  45. Wagner JG, Nelson E. Kinetic analysis of blood levels and urinary excretion in the absorptive phase after single doses of drug. J Pharm Sci. 1964;53:1392–403.

    CAS  PubMed  Google Scholar 

  46. Wagner JG. “Absorption rate constants” calculated according to the one-compartment open model with first-order absorption: implications in in vivo-in vitro correlations. J Pharm Sci. 1970;59:1049–50.

    CAS  PubMed  Google Scholar 

  47. Han HK, Lee BJ, Lee HK. Enhanced dissolution and bioavailability of biochanin A via the preparation of solid dispersion: in vitro and in vivo evaluation. Int J Pharm. 2011;415:89–94.

    CAS  PubMed  Google Scholar 

  48. Kuhikar A, Khan S, Kharabe K. Improvement in aqueous solubility of cilnidipine by amorphous solid dispersion, its formulation into interpenetrating polymer network microparticles and optimization by Box-Behnken design. 2021;1–12.

  49. De Haan JW, van den Bogaert HM, Ponjeé JJ, van de Ven LJM. Characterization of modified silica powders by fourier transform infrared spectroscopy and cross-polarization magic angle spinning NMR. J Colloid Interface Sci. 1986;110:591–600.

    Google Scholar 

  50. El-Sayyad NME-M, Badawi A, Abdullah ME, Abdelmalak NS. Dissolution enhancement of leflunomide incorporating self emulsifying drug delivery systems and liquisolid concepts. Bull Fac Pharmacy Cairo Univ. 2017;55:53–62.

  51. Mura P, Faucci MT, Parrini PL. Effects of grinding with microcrystalline cellulose and cyclodextrins on the ketoprofen physicochemical properties. Drug Dev Ind Pharm. 2001;27:119–28.

    CAS  PubMed  Google Scholar 

  52. Sayyad FJ, Tulsankar SL, Kolap UB. Design and development of liquisolid compact of candesartan cilexetil to enhance dissolution. J Pharm Res. 2013;7:381–8.

    CAS  Google Scholar 

  53. Khanfar M, Salem MS, Kaddour F. Preparation of sustained-release dosage form of Venlafaxine HCl using liquisolid technique. Pharm Dev Technol. 2014;19:103–15.

    CAS  PubMed  Google Scholar 

  54. Spireas s BM. Liquisolid systems and methods of preparing same. United States Pat. 6,096,337. 2000.

  55. Elkadi S, Elsamaligy S, Al-Suwayeh S, Mahmoud H. The development of self-nanoemulsifying liquisolid tablets to improve the dissolution of simvastatin. AAPS PharmSciTech. 2017;18:2586–97.

    CAS  PubMed  Google Scholar 

  56. Tiong N, Elkordy AA. Effects of liquisolid formulations on dissolution of naproxen. Eur J Pharm Biopharm. 2009;73:373–84.

    CAS  PubMed  Google Scholar 

  57. Aulton M. Pharmaceutics: the science of dosage form design (Second Edition). Edinburgh: Churchill Livingstone; 2002. p. 140–5.

    Google Scholar 

  58. Jadhav NR, Irny PV, Patil US. Solid state behavior of progesterone and its release from Neusilin US2 based liquisolid compacts. J Drug Deliv Sci Technol. 2017;38:97–106.

    CAS  Google Scholar 

  59. Arya P, Pathak K. Assessing the viability of microsponges as gastro retentive drug delivery system of curcumin: optimization and pharmacokinetics. Int J Pharm. 2014;460:1–12.

    CAS  PubMed  Google Scholar 

  60. Malakar J, Nayak AK, Pal D. Development of cloxacillin loaded multiple-unit alginate-based floating system by emulsion-gelation method. Int J Biol Macromol. 2012;50:138–47.

    CAS  PubMed  Google Scholar 

  61. Ogbonna JDN, Attama AA, Ofokansi KC, Patil SB, Basarkar GD. Optimization of formulation processes using Design Expert® Software for preparation of polymeric blends-artesunate-amodiaquine HCl microparticles. J Drug Deliv Sci Technol. 2017;39:36–49.

    CAS  Google Scholar 

  62. Sharma OP, Shah MV, Parikh DC, Mehta TA. Formulation optimization of gastroretentive drug delivery system for allopurinol using experimental design. Expert Opin Drug Deliv. 2015;12:513–24.

    CAS  PubMed  Google Scholar 

  63. Dressman JB, Amidon GL, Reppas C, Shah VP. Dissolution testing as a prognostic tool for oral drug absorption: immediate release dosage forms. Pharm Res. 1998;11–22. https://doi.org/10.1023/A:1011984216775.

  64. Baek IH, Kim JS, Ha ES, Choo GH, Cho W, Hwang SJ, et al. Dissolution and oral absorption of pranlukast nanosuspensions stabilized by hydroxypropylmethyl cellulose. Int J Biol Macromol. 2014;67:53–7.

    CAS  PubMed  Google Scholar 

  65. Barakat A, Shegokar R, Dittgen M, Müller RH. Coenzyme Q10 oral bioavailability: effect of formulation type. J Pharm Investig. 2013;43:431–51. https://doi.org/10.1007/s40005-013-0101-4.

  66. Pragst F, Herzler M, Erxleben BT. Systematic toxicological analysis by high-performance liquid chromatography with diode array detection (HPLC-DAD). Clin Chem Lab Med. 2004;42:1325–40.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santosh Shelke.

Ethics declarations

Competing Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaikh, F., Patel, M., Shelke, S. et al. Formulation, Characterization, Optimization, and Pharmacokinetic Evaluation of Cilnidipine-Loaded Liquisolid Compacts with Improved Dissolution and Bioavailability. J Pharm Innov 18, 404–425 (2023). https://doi.org/10.1007/s12247-022-09651-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-022-09651-z

Keywords

Navigation