Skip to main content
Log in

Alpha-Lipoic Acid and Cyanocobalamin Co-Loaded Nanoemulsions: Development, Characterization, and Evaluation of Stability

  • Original Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to prepare a suitable formulation and perform in vitro characterization studies for oral use by exploiting the synergistic effect of alpha-lipoic acid (ALA) and cyanocobalamin (Vit B12) for the treatment and prophylaxis of various diseases such as diabetic neuropathy, peripheral neuropathy, and neurological disorders.

Methods

Nanoemulsions were prepared using different oils (castor oil (CO) and sunflower oil (SO)) and agitation methods (magnetic stirring and ultraturrax). The effects of experimental parameters on droplet size, polydispersity index, zeta potential, encapsulation efficiency, and release rate properties of nanoemulsions were investigated. The physical and chemical stability of formulations at various temperatures (30°C, 50°C, and 70°C) and pH values (1.2, 4.5, 6.8, and 7.4) were also evaluated.

Results

An HPLC method, enabling the simultaneous determination of ALA and Vit B12, has been successfully developed with a correlation coefficient value of 0.9999 for both analytes. The best results were obtained by CO and magnetic stirring in terms of colloidal properties for either plain (P-C-NE) or ALA-Vit B12 co-loaded (C-NE) nanoemulsions. The C-NE had better stability under different conditions, higher encapsulation efficiency (ALA-93.80%, Vit B12-110.65%), and release percentage.

Conclusion

As a result, this study demonstrated that nanoemulsions containing ALA and Vit B12 can be successfully produced and are stable at different temperatures and pH values.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ALA:

Alpha-lipoic acid

Vit B12 :

Cyanocobalamin

CO:

Castor oil

SO:

Sunflower oil

LP:

Liquid paraffin

C-NE:

Alpha-lipoic acid and cyanocobalamin co-loaded nanoemulsion prepared using castor oil and magnetic stirring

S-NE:

Alpha-lipoic acid and cyanocobalamin co-loaded nanoemulsion prepared using sunflower oil and magnetic stirring

CU-NE:

Alpha-lipoic acid and cyanocobalamin co-loaded nanoemulsion prepared using castor oil and ultraturrax

P-C-NE:

Plain nanoemulsion prepared using castor oil and magnetic stirring

P-S-NE:

Plain nanoemulsion prepared using sunflower oil and magnetic stirring

P-CU-NE:

Plain nanoemulsion prepared using castor oil and ultraturrax

DS:

Droplet size

PdI:

Polydispersity index

ZP:

Zeta potential

DW:

Distilled water

MS:

Magnetic stirring

US:

Ultraturrax stirring

References

  1. Fratantonio D, Speciale A, Molonia MS, Bashllari R, Palumbo M, Saija A, Cimino F, Monastra G, Virgili F. Alpha-lipoic acid, but not di-hydrolipoic acid, activates Nrf2 response in primary human umbilical-vein endothelial cells and protects against TNF-α induced endothelium dysfunction. Arch Biochem Biophys. 2018;655:18–25. https://doi.org/10.1016/j.abb.2018.08.003.

    Article  CAS  PubMed  Google Scholar 

  2. Haghighatdoost F, Hariri M. Does alpha-lipoic acid affect lipid profile? A meta-analysis and systematic review on randomized controlled trials. Eur J Pharmacol. 2019;847:1–10. https://doi.org/10.1016/j.ejphar.2019.01.001.

    Article  CAS  PubMed  Google Scholar 

  3. Mohammed MA, Mahmoud MO, Awaad AS, Gamal GM, Abdelfatah D. Alpha lipoic acid protects against dexamethasone-induced metabolic abnormalities via APPL1 and PGC-1 α up regulation. Steroids. 2019;144:1–7. https://doi.org/10.1016/j.steroids.2019.01.004.

    Article  CAS  PubMed  Google Scholar 

  4. Noshadian M, Namvarpour Z, Amini A, Raoofi A, Atabati H, Sadeghi Y, Aliaghaei A, Abdollahifar MA. Alpha lipoic acid ameliorates THIM-induced prefrontal cell loss and abnormal enzymatically contents in the developing rat. J Chem Neuroanat. 2020;103:101727. https://doi.org/10.1016/j.jchemneu.2019.101727.

    Article  CAS  PubMed  Google Scholar 

  5. Tripathy J, Chowdhury AR, Prusty M, Muduli K, Priyadarshini N, Reddy KS, Banerjee B, Elangovan S. α-Lipoic acid prevents the ionizing radiation-induced epithelial-mesenchymal transition and enhances the radiosensitivity in breast cancer cells. Eur J Pharmacol. 2020;871:172938. https://doi.org/10.1016/j.ejphar.2020.172938.

    Article  CAS  PubMed  Google Scholar 

  6. Mokhtari S, Mahdavi AH, Hajian M, Kowsar R, Varnosfaderani SR, Nasr-Esfahani MH. The attenuation of the toxic effects of LPS on mouse pre-implantation development by alpha-lipoic acid. Theriogenology. 2020;143:139–47. https://doi.org/10.1016/j.theriogenology.2019.12.008.

    Article  CAS  PubMed  Google Scholar 

  7. Chen S, Liu G, Long M, Zou H, Cui H. Alpha lipoic acid attenuates cadmium-induced nephrotoxicity via the mitochondrial apoptotic pathways in rat. J Inorg Biochem. 2018;184:19–26. https://doi.org/10.1016/j.jinorgbio.2018.04.001.

    Article  CAS  PubMed  Google Scholar 

  8. Kuban-Jankowska A, Gorska-Ponikowska M, Wozniak M. Lipoic acid decreases the viability of breast cancer cells and activity of PTP1B and SHP2. Anticancer Research. 2017;37(6):2893–8. https://doi.org/10.21873/anticanres.11642.

  9. Gligorijević N, Šukalović V, Penezić A, Nedić O. Characterisation of the binding of dihydro-alpha-lipoic acid to fibrinogen and the effects on fibrinogen oxidation and fibrin formation. Int J Biol Macromol. 2020;147:319–25. https://doi.org/10.1016/j.ijbiomac.2020.01.098.

    Article  CAS  PubMed  Google Scholar 

  10. Dollo G, Le Corre P, Guérin A, Chevanne F, Burgot JL, Leverge R. Spray-dried redispersible oil-in-water emulsion to improve oral bioavailability of poorly soluble drugs. Eur J Pharm Sci. 2003;19(4):273–80. https://doi.org/10.1016/S0928-0987(03)00134-9.

    Article  CAS  PubMed  Google Scholar 

  11. Hung KL, Wang CC, Huang CY, Wang SJ. Cyanocobalamin, vitamin B12, depresses glutamate release through inhibition of voltage-dependent Ca2+ influx in rat cerebrocortical nerve terminals (synaptosomes). Eur J Pharmacol. 2009;602(2-3):230–7. https://doi.org/10.1016/j.ejphar.2008.11.059.

    Article  CAS  PubMed  Google Scholar 

  12. Goto Y, Masuda A, Aiba T. In vivo application of chitosan to improve bioavailability of cyanocobalamin, a form of vitamin B12, following intraintestinal administration in rats. Int J Pharm. 2015;483(1–2):250–5. https://doi.org/10.1016/j.ijpharm.2015.02.016.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang H, Wang Q, Liu T, Zhang Y, Qian A, Xia Q. Development and characterization of alpha-lipoic acid-loaded nanostructured lipid carrier hydrogel. Integrated Ferroelectrics. 2017;179(1):130–9. https://doi.org/10.1080/10584587.2017.1331332.

    Article  CAS  Google Scholar 

  14. Wang J, Xia Q. Alpha-lipoic acid-loaded nanostructured lipid carrier: Sustained release and biocompatibility to HaCaT cells in vitro. Drug Delivery. 2014;21(5):328–41. https://doi.org/10.3109/10717544.2013.846435.

    Article  CAS  PubMed  Google Scholar 

  15. Genç L, Kutlu HM, Güney G. Vitamin B12-loaded solid lipid nanoparticles as a drug carrier in cancer therapy. Pharm Dev Technol. 2015;20(3):337-44. https://doi.org/10.3109/10837450.2013.867447.

  16. Salvia-Trujillo L, Martín-Belloso O, McClements DJ. Excipient nanoemulsions for improving oral bioavailability of bioactives. Nanomaterials. 2016;6(1):17. https://doi.org/10.3390/nano6010017.

    Article  CAS  Google Scholar 

  17. Chellapa P, Mohamed AT, Keleb EI, Elmahgoubi A, Eid AM, Issa YS, Elmarzugi NA. Nanoemulsion and nanoemulgel as a topical formulation. IOSR Journal of Pharmacy. 2015;5(10):43–7.

    CAS  Google Scholar 

  18. Chime SA, Kenechukwu FC, Attama AA. Nanoemulsions-advances in formulation, characterization and applications in drug delivery. In: Sezer AD, editor. Application of nanotechnology in drug delivery. London: IntechOpen;2014. p.77–126. https://doi.org/10.5772/58673.

  19. Naseema A, Kovooru L, Behera AK, Kumar KPP, Srivastava P. A critical review of synthesis procedures, applications and future potential of nanoemulsions. Adv Colloid Interface Sci. 2021;287:102318. https://doi.org/10.1016/j.cis.2020.102318.

    Article  CAS  Google Scholar 

  20. Katzer T, Chaves P, Bernardi A, Pohlmann AR, Guterres SS, Beck RCR. Castor oil and mineral oil nanoemulsion: development and compatibility with a soft contact lens. Pharm Dev Technol. 2014;19(2):232–7. https://doi.org/10.3109/10837450.2013.769569.

    Article  CAS  PubMed  Google Scholar 

  21. Malvern Instruments. Zetasizer nano series user manual. MAN 0317. 2004;1.1. Malvern Instruments Ltd., United Kingdom.

  22. Zhu Z, Wen Y, Yi J, Cao Y, Liu F, McClements DJ. Comparison of natural and synthetic surfactants at forming and stabilizing nanoemulsions: Tea saponin, Quillaja saponin, and Tween 80. J Colloid Interface Sci. 2019;536:80–7. https://doi.org/10.1016/j.jcis.2018.10.024.

    Article  CAS  PubMed  Google Scholar 

  23. Moreira JB, Goularte PG, de Morais MG, Costa JAV. Preparation of beta-carotene nanoemulsion and evaluation of stability at a long storage period. Food Sci Technol (Campinas). 2019;39(3):599–604. https://doi.org/10.1590/fst.31317.

    Article  Google Scholar 

  24. Gohtani S, Prasert W. Nano-emulsions; emulsification using low energy methods. Japan J Food Eng. 2014;15(3):119–130. https://doi.org/10.11301/jsfe.15.119.

  25. Isehunwa SO, Udeagbara SG, Akpabio JU. Effect of temperature and contamination on the surface tension of niger delta crude oils. Aust J Basic & Appl Sci. 2011;5(5):610–6.

    Google Scholar 

  26. Yuan Y, Gao Y, Zhao J, Mao L. Characterization and stability evaluation of β-carotene nanoemulsions prepared by high pressure homogenization under various emulsifying conditions. Food Res Int. 2008;41(1):61–8. https://doi.org/10.1016/j.foodres.2007.09.006.

    Article  CAS  Google Scholar 

  27. Tubesha Z, Bakar ZA, Ismail M. Characterization and stability evaluation of thymoquinone nanoemulsions prepared by high-pressure homogenization. J Nanomater. 2013;453290:1–6. https://doi.org/10.1155/2013/453290.

    Article  CAS  Google Scholar 

  28. Prá VD, Pires FB, Dolwitsch CB, Lazzaretti AP Jr, Roggia I, Mortari SR, Freire DMG, Souza H, Mazutti MA, da Rosa MB. Formulation and characterization of ultrasound-assisted nanoemulsions containing palm oil (Elaeis guineensis Jacq) in water. Braz J Chem Eng. 2019;36(2):941–7. https://doi.org/10.1590/0104-6632.20190362s20180291.

    Article  CAS  Google Scholar 

  29. Gurpreet K, Singh SK. Review of nanoemulsion formulation and characterization techniques. Indian J Pharm Sci. 2018;80(5):781–9. https://doi.org/10.4172/pharmaceutical-sciences.1000422.

    Article  CAS  Google Scholar 

  30. Laxmi M, Bhardwaj A, Mehta S, Mehta A. Development and characterization of nanoemulsion as carrier for the enhancement of bioavailability of artemether. Artif Cell Nanomed B. 2015;43(5):334–44. https://doi.org/10.3109/21691401.2014.887018.

    Article  CAS  Google Scholar 

  31. Sucharitha P, Satyanarayana SV, Bhaskar-Reddy K. Development of protocol for screening of formulation attributes and the assessment of common quality problems in oleuropein loaded nanostructured lipid carries. Int J Res Pharm Sci. 2019;10(2):1382–91. https://doi.org/10.26452/ijrps.v10i2.545.

  32. Zirak MB, Pezeshki A. Effect of surfactant concentration on the particle size, stability and potential zeta of beta carotene nano lipid carrier. Int J Curr Microbiol App Sci. 2015;4(9):924–32.

    CAS  Google Scholar 

  33. Wik J, Bansal KK, Assmuth T, Rosling A, Rosenholm JM. Facile methodology of nanoemulsion preparation using oily polymer for the delivery of poorly soluble drugs. Drug Deliv and Transl Res. 2020;10:1228-40. https://doi.org/10.1007/s13346-019-00703-5.

  34. Alcântara MA, Alcântara de Lima AE, Braga ALM, Tonon RV, Galdeano MC, da Costa Mattos M, Brígida AIS, Rosenhaim R, dos Santos NA, de Magalhães Cordeiro AMT. Influence of the emulsion homogenization method on the stability of chia oil microencapsulated by spray drying. Powder Technology. 2019;354:877–85. https://doi.org/10.1016/j.powtec.2019.06.026.

  35. Li X, Wang L, Wang B. Optimization of encapsulation efficiency and average particle size of Hohenbuehelia serotina polysaccharides nanoemulsions using response surface methodology. Food Chem. 2017;229:479–86. https://doi.org/10.1016/j.foodchem.2017.02.051.

    Article  CAS  PubMed  Google Scholar 

  36. Ibrahim SF, Osman K, Das S, Othman AM, Majid NA, Rahman MPA. A study of the antioxidant effect of alpha lipoic acids on sperm quality. Clinics. 2008;63:545–50. https://doi.org/10.1590/S1807-59322008000400022.

    Article  Google Scholar 

  37. Jones D. Pharmaceutical solutions for oral administration, in: Jones, D., (Ed), Pharmaceutics-Dosage Form and Design. Pharmaceutical Press; 2008. p. 1–23.

  38. Lam MSH. Extemporaneous compounding of oral liquid dosage formulations and alternative drug delivery methods for anticancer drugs. Pharmacotherapy. 2011;31(2):164–92. https://doi.org/10.1592/phco.31.2.164.

    Article  CAS  Google Scholar 

  39. Monajjemzadeh F, Ebrahimi F, Zakeri-Milani P, Valizadeh H. Effects of formulation variables and storage conditions on light protected vitamin B12 mixed parenteral formulations. Adv Pharm Bull. 2014;4(4), 329–38. https://doi.org/10.5681/apb.2014.048.

  40. Youssef M, Ghorab M, Khater M, Gad S. Effect of additives on intranasal preparation of cyanocobalamin. Int J Pharm Pharm Sci. 2015;7(1):210–7.

    CAS  Google Scholar 

  41. Jamil MF, Uemura Y, Kusakabe K, Ayodele OB, Osman N, Majid NMNA, Yusup S. Transesterification of mixture of castor oil and sunflower oil in millichannel reactor: FAME yield and flow behaviour. Procedia Engineering. 2016;148:378–84. https://doi.org/10.1016/j.proeng.2016.06.487.

    Article  CAS  Google Scholar 

  42. Pal R. Effect on droplet size on the rheology of emulsions. AIChE J. 1996;42(11):3181–90. https://doi.org/10.1002/aic.690421119.

    Article  CAS  Google Scholar 

  43. Butron Fujiu K, Kobayashi I, Neves MA, Uemura K, Nakajima M. Effect of temperature on production of soybean oil-in-water emulsions by microchannel emulsification using different emulsifiers. Food Sci Technol Res. 2011;17(2):77–86. https://doi.org/10.3136/fstr.17.77.

    Article  Google Scholar 

  44. Shigemoto N, Al-Maamari RS, Jibril BY, Hirayama A, Sueyoshi M. Effect of water content and surfactant type on viscosity and stability of emulsified heavy mukhaizna crude oil. Energy Fuels. 2007;21(2):1014–8. https://doi.org/10.1021/ef060259o.

    Article  CAS  Google Scholar 

  45. Aranberri I, Binks BP, Clint JH, Fletcher PDI. Evaporation rates of water from concentrated oil-in-water emulsions. Langmuir. 2004;20(6):2069–74. https://doi.org/10.1021/la035031x.

    Article  CAS  PubMed  Google Scholar 

  46. Vallero D. Scale and complexity of air pollution. In: Vallero D, editor. Fundamentals of air pollution-5th edition. Academic Press; 2014. p. 381–412. https://doi.org/10.1016/B978-0-12-401733-7.00016-5.

  47. Gao FY, Hu EJ. Effects of pH on rheological characteristics and stability of petroleum coke water slurry. Pet Sci. 2016;13:782–7. https://doi.org/10.1007/s12182-016-0118-1.

    Article  CAS  Google Scholar 

  48. Zheng M, Tang W, Kong R, Zhu X. Inclusion complex of alpha-lipoic acid containing alkalizer for improving the solubility and stability prepared by co-grinding. Indian J Pharm Sci. 2017;79(4):544–52. https://doi.org/10.4172/pharmaceutical-sciences.1000261.

    Article  CAS  Google Scholar 

  49. The International Pharmacopoeia: Cyanocobalamin (Cyanocobalaminum) - Sixth Edition, 2016.

  50. Parente E, Colannino G, Picconi O, Monastra G. Safety of oral alpha-lipoic acid treatment in pregnant women: a retrospective observational study. Eur Rev Med Pharmacol Sci. 2017;21(18):4219–27.

    CAS  PubMed  Google Scholar 

  51. Asare-Addo K, Conway BR, Larhrib H, Levina M, Rajabi-Siahboomi AR, Tetteh J, Boateng J, Nokhodchi A. The effect of pH and ionic strength of dissolution media on in-vitro release of two model drugs of different solubilities from HPMC matrices. Colloid Surface B. 2013;111:384–91. https://doi.org/10.1016/j.colsurfb.2013.06.034.

    Article  CAS  Google Scholar 

  52. Hussain A, Samad A, Singh SK, Ahsan MN, Haque MW, Faruk A, Ahmed FJ. Nanoemulsion gel-based topical delivery of an antifungal drug: in vitro activity and in vivo evaluation. Drug Delivery. 2016;23(2):642–57. https://doi.org/10.3109/10717544.2014.933284.

    Article  CAS  PubMed  Google Scholar 

  53. Zhao H, Lu H, Gong T, Zhang Z. Nanoemulsion loaded with lycobetaine–oleic acid ionic complex: physicochemical characteristics, in vitro, in vivo evaluation, and antitumor activity. Int J Nanomedicine. 2013;8(1):1959–73. https://doi.org/10.2147/IJN.S43892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Calderó G, Llinàs M, García-Celma MJ, Solans C. Studies on controlled release of hydrophilic drugs from w/o high internal phase ratio emulsions. J Pharm Sci. 2010;99(2):701–11. https://doi.org/10.1002/jps.21850.

    Article  CAS  PubMed  Google Scholar 

  55. Lasoń E, Sikora E, Miastkowska M, Socha P, Ogonowski J. NLC delivery systems for alpha lipoic acid: Physicochemical characteristics and release study. Colloid Surface A. 2017;532:57–62. https://doi.org/10.1016/j.colsurfa.2017.06.083.

    Article  CAS  Google Scholar 

  56. Kesrevani RK, Sharma AK. Nanoarchitectured biomaterials: present status and future prospects in drug delivery. In: Holban AM, Grumezescu A, editors. Nanoarchitectonics for Smart Delivery and Drug Targeting-1st Edition. William Andrew; 2016. p. 35–66. https://doi.org/10.1016/B978-0-323-47347-7.00002-1.

  57. Helgeson ME. Colloidal behavior of nanoemulsions: Interactions, structure, and rheology. Curr Opin Colloid Interface Sci. 2016;25:39–50. https://doi.org/10.1016/j.cocis.2016.06.006.

    Article  CAS  Google Scholar 

  58. Oryza. Alpha lipoic acid: Ingredient for weight loss, beauty and anti-oxidative products. Oryza Oil&Fat Chemical Co., Ltd, 2006.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Özlem Çoban.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 758 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çoban, Ö., Yıldırım, S. & Bakır, T. Alpha-Lipoic Acid and Cyanocobalamin Co-Loaded Nanoemulsions: Development, Characterization, and Evaluation of Stability. J Pharm Innov 17, 510–520 (2022). https://doi.org/10.1007/s12247-020-09531-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-020-09531-4

Keywords

Navigation