Skip to main content
Log in

Excess rate for model selection in interactive compression using belief propagation decoding

  • Published:
Annals of Telecommunications Aims and scope Submit manuscript

Abstract

Interactive compression refers to the problem of compressing data while sending only the part requested by the user. In this context, the challenge is to perform the extraction in the compressed domain directly. Theoretical results exist, but they assume that the true distribution is known. In practical scenarios instead, the distribution must be estimated. In this paper, we first formulate the model selection problem for interactive compression and show that it requires to estimate the excess rate incurred by mismatched decoding. Then, we propose a new expression to evaluate the excess rate of mismatched decoding in a practical case of interest: when the decoder is the belief propagation algorithm. We also propose a novel experimental setup to validate this closed-form formula. We show a good match for practical interactive compression schemes based on fixed-length Low-Density Parity-Check (LDPC) codes. This new formula is of great importance to perform model and rate selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Roumy A., Maugey T. (2015) Universal lossless coding with random user access: the cost of interactivity. In: 2015 IEEE International Conference on Image Processing (ICIP), pp 1870–1874

  2. Dupraz E., Roumy A., Maugey T., Kieffer M. (2019) Rate-storage regions for extractable source coding with side information. Physical Communication 37:100845

    Article  Google Scholar 

  3. Mahmoudian Bidgoli N., Maugey T., Roumy A. (2019) Compression de contenus 360 et transmission adaptée á la navigation de l’utilisateur. In: Actes de la 27éme édition du colloque Gretsi

  4. Maugey T., Roumy A., Dupraz E., Kieffer M. (2020) Incremental coding for extractable compression in the context of massive random access. IEEE Transactions on Signal and Information Processing over Networks 6:251–260

    Article  MathSciNet  Google Scholar 

  5. Draper S.C., Martinian E. (2007) Compound conditional source coding, slepian-wolf list decoding, and applications to media coding. In: 2007 IEEE International Symposium on Information Theory, pp 1511–1515

  6. Chen J., He D., Jagmohan A. (2009) On the duality between Slepian–Wolf coding and channel coding under mismatched decoding. IEEE Trans Inf Theory 55(9):4006–4018

    Article  MathSciNet  Google Scholar 

  7. Merhav N., Kaplan G., Lapidoth A., Shamai Shitz S. (1994) On information rates for mismatched decoders. IEEE Trans Inf Theory 40(6):1953–1967

    Article  Google Scholar 

  8. Ganti A., Lapidoth A., Telatar I.E. (2000) Mismatched decoding revisited: general alphabets, channels with memory, and the wide-band limit. IEEE Trans Inf Theory 46(7):2315–2328

    Article  MathSciNet  Google Scholar 

  9. Scarlett J., Martinez A., i. Fabregas A.G. (2014) Mismatched decoding: error exponents, second-order rates and saddlepoint approximations. IEEE Trans Inf Theory 60(5):2647–2666

    Article  MathSciNet  Google Scholar 

  10. Mahmoudian Bidgoli N., Maugey T., Roumy A., Nasiri F., Payan F. (2019) A geometry-aware compression of 3d mesh texture with random access. In: 2019 Picture Coding Symposium (PCS), pp 1–5

  11. Han T.S., Kobayashi K. (2002) Mathematics of information and coding. Translations of mathematical monographs, Providence, R.I. : American Mathematical Society, 203

  12. Csiszar I., Shields P.C. (2004) Information theory and statistics: a tutorial. Foundations and Trends in Communications and Information Theory 1(4):417–528. Publisher: Now Publishers, Inc.

    Article  Google Scholar 

  13. Rissanen J. (1978) Modeling by shortest data description. Automatica 14(5):465–471

    Article  Google Scholar 

  14. Gruenwald P.D. (2007) The minimum description length principle. MIT Press

  15. Dupraz E., Maugey T., Roumy A., Kieffer M. (August 2017) Transmission and storage rates for sequential massive random access. arXiv:1612.07163 [cs, math]

  16. Cover T.M., Thomas J.A. (2006) Elements of information theory (wiley series in telecommunications and signal processing). Wiley-Interscience, USA

  17. Bidgoli N.M., Maugey T., Roumy A. (2017) Correlation model selection for interactive video communication. In: 2017 IEEE International Conference on Image Processing (ICIP), pp 2184–2188

  18. Sae-Young Chung, Forney G.D., Richardson T.J., Urbanke R. (2001) On the design of low-density parity-check codes within 0.0045 db of the shannon limit. IEEE Commun Lett 5(2):58–60

    Article  Google Scholar 

  19. Roumy A., Guemghar S., Caire G., Verdu S. (2004) Design methods for irregular repeat-accumulate codes. IEEE Trans Inf Theory 50(8):1711–1727

    Article  MathSciNet  Google Scholar 

  20. Richardson T.J., Shokrollahi M.A., Urbanke R.L. (2001) Design of capacity-approaching irregular low-density parity-check codes. IEEE Trans Inf Theory 47(2):619–637

    Article  MathSciNet  Google Scholar 

  21. Wyner A. (1974) Recent results in the shannon theory. IEEE Trans Inf Theory 20(1):2–10

    Article  MathSciNet  Google Scholar 

  22. Chen J., He D., Yang E. (2007) On the codebook-level duality between slepian-wolf coding and channel coding. In: 2007 Information Theory and Applications Workshop, pp 84–93

  23. Wang L., Kim Y. (2015) Linear code duality between channel coding and slepian-wolf coding. In: 2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp 147–152

  24. Liveris A.D., Zixiang Xiong, Georghiades C.N. (2002) Compression of binary sources with side information at the decoder using ldpc codes. IEEE Commun Lett 6(10):440–442

    Article  Google Scholar 

  25. Westerlaken R.P., Borchert S., Gunnewiek R.K., Lagendijk R.L. (2007) Analyzing symbol and bit plane-based ldpc in distributed video coding. In: 2007 IEEE International Conference on Image Processing, 2, pp II–17–II–20

  26. Gallager R. (1962) Low-density parity-check codes. IRE Transactions on Information Theory 8 (1):21–28

    Article  MathSciNet  Google Scholar 

  27. Richardson T.J., Urbanke R.L. (2008) Modern coding theory, Cambridge Univ Press

  28. ten Brink S. (2001) Convergence behavior of iteratively decoded parallel concatenated codes. IEEE Trans Commun 49(10):1727–1737

    Article  Google Scholar 

  29. Ryan W., Lin S. (2009) Channel codes: classical and modern, Cambridge University Press

  30. Land I., Huber J. (2006nov) Information combining. Found. Trends Commun. Inf. Theory 3 (3):227–330

    Article  Google Scholar 

  31. Ashikhmin A., Kramer G., ten Brink S. (2004) Extrinsic information transfer functions: model and erasure channel properties. IEEE Trans Inf Theory 50(11):2657–2673

    Article  MathSciNet  Google Scholar 

  32. ten Brink S., Kramer G., Ashikhmin A. (2004) Design of low-density parity-check codes for modulation and detection. IEEE Trans Commun 52(4):670–678

    Article  Google Scholar 

  33. Sun Z., Tian C., Chen J., Wong K.M. (2010) Ldpc code design for asynchronous slepian-wolf coding. IEEE Trans Commun 58(2):511–520

    Article  Google Scholar 

Download references

Funding

This work was partially supported by the Cominlabs excellence laboratory with funding from the French National Research Agency (ANR-10-LABX-07-01) and by the Brittany Region (Grant No. ARED 9582 InterCOR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navid Mahmoudian Bidgoli.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bidgoli, N.M., Maugey, T. & Roumy, A. Excess rate for model selection in interactive compression using belief propagation decoding. Ann. Telecommun. 75, 623–633 (2020). https://doi.org/10.1007/s12243-020-00805-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12243-020-00805-z

Keywords

Navigation