Skip to main content
Log in

Fault Diagnosis and Tolerance on Reliability of Automotive Motor Control System: A Review

  • Published:
International Journal of Automotive Technology Aims and scope Submit manuscript

Abstract

This paper reviews fault diagnosis and tolerant techniques for improving reliability of automotive motor control systems which consist of an inverter, permanent magnet synchronous motor and sensors. In order to improve reliability of system, the fault diagnosis is the first step once a fault occurs. An accurate and timely detection and protection can prevent fault propagations and catastrophic consequences. The fault tolerant operation is the next counter measure, which is based on redundancy design. In this paper, statistical survey results on occurrence and failure rate of common fault modes are summarized for inverter, electric motor and sensors, respectively. And then, fault diagnosis and tolerant methods for the main fault modes are discussed based on the researches and literatures which are adequate for automotive applications. Finally, a reliability assessment methodology according to fault mitigation and tolerant concepts is introduced and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • An, Q., Sun, L., Zhao, K. and Sun, L. (2011). Switching function model-based fast-diagnostic method of open-switch faults in inverters without sensors. IEEE Trans. Power Electronics 26, 1, 119–126.

    Article  Google Scholar 

  • Bazurto, A. J., Quispe, E. C. and Mendoza, R. C. (2016). Causes and failures classification of industrial electric motor. IEEE ANDESCON, Arequipa, Peru.

  • Bazzi, A. M., Dominguez-Garcia, A. and Krein, P. T. (2012). Markov reliability modeling for induction motor drives under field-oriented control. IEEE Trans. Power Electronics 27, 2, 534–546.

    Article  Google Scholar 

  • Berriri, H., Naouar, M. W. and Slama-Belkhodja I. (2012a). Easy and fast sensor fault detection and isolation algorithm for electrical drives. IEEE Trans. Power Electronics 27, 2, 490–499.

    Article  Google Scholar 

  • Berriri, H., Naouar, W., Bahri, I., Slama-Belkhodja, I. and Monmasson, E. (2012b). Field programmable gate array-based fault-tolerant hysteresis current control for AC machine drives. IET Electric Power Applications 6, 3, 181–189.

    Article  Google Scholar 

  • Chakraborty, C. and Verma, V. (2015). Speed and current sensor fault detection and isolation technique for induction motor drive using axes transformation. IEEE Trans. Industrial Electronics 62, 3, 1943–1954.

    Article  Google Scholar 

  • Choi, C. and Lee, W. (2012). Design and evaluation of voltage measurement-based sectoral diagnosis method for inverter open switch faults of permanent magnet synchronous motor drives. IET Electric Power Applications 6, 8, 526–532.

    Article  Google Scholar 

  • Choi, S., Haque, M. S., Tarek, M. T. B., Mulpuri, V., Duan, Y., Das, S., Garg, V., Ionel, D. M., Masrur, M. A., Mirafzal, B. and Toliyat, H. A. (2018). Fault diagnosis techniques for permanent magnet AC machine and drives —A review of current state of the art. IEEE Trans. Transportation Electrification 4, 2, 444–463.

    Article  Google Scholar 

  • Diab, M. S., Elserougi, A. A., Abdel-Khalik, A. S., Massoud, A. M. and Ahmed, S. (2016). A nine-switch-converter-based integrated motor drive and battery charger system for evs using symmetrical six-phase machines. IEEE Trans. Industrial Electronics 63, 9, 5326–5335.

    Article  Google Scholar 

  • Donato, G. D., Scelba, G., Pulvirenti, M., Scarcella, G. and Capponi, F. G. (2019). Low-cost, high-resolution, fault-robust position and speed estimation for PMSM drives operating in safety-critical systems. IEEE Trans. Power Electronics 34, 1, 550–564.

    Article  Google Scholar 

  • Du, B., Wu, S., Han, S. and Cui, S. (2016). Interturn fault diagnosis strategy for interior permanent-magnet synchronous motor of electric vehicles based on digital signal processor. IEEE Trans. Industrial Electronics 63, 3, 1694–1706.

    Article  Google Scholar 

  • Ebrahimi, B. M. and Faiz, J. (2010). Diagnosis and performance analysis of threephase permanent magnet synchronous motors with static, dynamic and mixed eccentricity. IET Electric Power Applications 4, 1, 53–66.

    Article  Google Scholar 

  • Estima, J. O. and Cardoso, A. J. M. (2011). A new approach for real-time multiple open-circuit fault diagnosis in voltage-source inverters. IEEE Trans. Industry Applications 47, 6, 2487–2494.

    Article  Google Scholar 

  • Estima, J. O. and Cardoso, A. J. M. (2013). A new algorithm for real-time multiple open-circuit fault diagnosis in voltage-fed PWM motor drives by the reference current errors. IEEE Trans. Industrial Electronics 60, 8, 3496–3505.

    Article  Google Scholar 

  • Faiz, J. and Mazaheri-Tehrani, E. (2017). Demagnetization modeling and fault diagnosing techniques in permanent magnet machines under stationary and nonstationary conditions: An overview. IEEE Trans. Industry Applications 53, 3, 2772–2785.

    Article  Google Scholar 

  • Faiz, J., Nejadi-Koti, H. and Valipour, Z. (2017). Comprehensive review on inter-turn fault indexes in permanent magnet motors. IET Electric Power Applications 11, 1, 142–156.

    Article  Google Scholar 

  • Foo, G. H. B., Zhang, X. and Vilathgamuwa, D. M. (2013). A sensor fault detection and isolation method in interior permanent-magnet synchronous motor drives based on an extended kalman filter. IEEE Trans. Industrial Electronics 60, 8, 3485–3495.

    Article  Google Scholar 

  • Freire, N. M. A., Estima, J. O. and Cardoso, A. J. M. (2013). Open-circuit fault diagnosis in PMSG drives for wind turbine applications. IEEE Trans. Industrial Electronics 60, 9, 3957–3967.

    Article  Google Scholar 

  • Freire, N. M. A., Estima, J. O. and Cardoso, A. J. M. (2014). A new approach for current sensor fault diagnosis in PMSG drives for wind energy conversion systems. IEEE Trans. Industry Applications 50, 2, 1206–1214.

    Article  Google Scholar 

  • Goktas, T., Zafarani, M. and Akin, B. (2016). Discernment of broken magnet and static eccentricity faults in permanent magnet synchronous motors. IEEE Trans. Energy Conversion 31, 2, 578–587.

    Article  Google Scholar 

  • Hang, J., Zhang, J., Cheng, M. and Huang, J. (2015). Online interturn fault diagnosis of permanent magnet synchronous machine using zero-sequence components. IEEE Trans. Power Electronics 30, 12, 6731–6741.

    Article  Google Scholar 

  • He, L., Chen, G. Y. and Zheng, H. Y. (2015). Fault tolerant control method of dual steering actuator motors for steer-by-wire system. Int. J. Automotive Technology 16, 6, 977–987.

    Article  Google Scholar 

  • Hong, J., Lee, S. B., Kral, C. and Haumer, A. (2012). Detection of airgap eccentricity for permanent magnet synchronous motors based on the d-axis inductance. IEEE Trans. Power Electronics 27, 5, 2605–2612.

    Article  Google Scholar 

  • Lee, J. H., Moon, H. T. and Yoo, J. Y. (2012). Current sensorless drive method for electric power steering. Int. J. Automotive Technology 13, 7, 1141–1147.

    Article  Google Scholar 

  • Li, W. and Cheng, M. (2019). Reliability analysis and evaluation for flux-switching permanent magnet machine. IEEE Trans. Industrial Electronics 66, 3, 1760–1769.

    Article  Google Scholar 

  • Luo, Y., Luo, J. and Qin, Z. (2016). Model-independent self-tuning fault-tolerant control method for 4WID EV. Int. J. Automotive Technology 17, 6, 1091–1100.

    Article  Google Scholar 

  • Munim, W. N. W. A., Duran, M. J., Che, H. S., Bermúdez, M., González-Prieto, I. and Rahim, N. A. (2017). A unified analysis of the fault tolerance capability in six-phase induction motor drives. IEEE Trans. Power Electronics 32, 10, 7824–7836.

    Article  Google Scholar 

  • Murr, G. E., Griffo, A., Wang, J., Zhu, Z. Q. and Mecrow, B. (2015). Reliability assessment of fault tolerant permanent magnet AC drives. IECON — 41st Annual Conf. IEEE Industrial Electronics Society, Yokohama, Japan.

  • Najafabadi, T. A., Salmasi, F. R. and Jabehdar-Maralani, P. (2011). Detection and isolation of speed-, DC-link voltage-, and current-sensor faults based on an adaptive observer in induction-motor drives. IEEE Trans. Industrial Electronics 58, 5, 1662–1672.

    Article  Google Scholar 

  • Oh, H., Han, B., Mccluskey, P., Han, C. and Youn, B. D. (2015). Physics-of-failure, condition monitoring, and prognostics of insulated gate bipolar transistor modules: A review. IEEE Trans. Power Electronics 30, 5, 2413–2426.

    Article  Google Scholar 

  • Park, J. and Hur, J. (2016). Detection of inter-turn and dynamic eccentricity faults using stator current frequency pattern in IPM-type BLDC motors. IEEE Trans. Industrial Electronics 63, 3, 1771–1780.

    Article  Google Scholar 

  • Qi, Y., Bostanci, E., Zafarani, M. and Akin, B. (2019a). Severity estimation of interturn short circuit fault for PMSM. IEEE Trans. Industrial Electronics 66, 9, 7260–7269.

    Article  Google Scholar 

  • Qi, Y., Zafarani, M., Gurusamy, V. and Akin, B. (2019b). Advanced severity monitoring of interturn short circuit faults in PMSMs. IEEE Trans. Transportation Electrification 5, 2, 395–404.

    Article  Google Scholar 

  • Salehifar, M., Arashloo, R. S., Moreno-Eguilaz, M., Sala, V. and Romeral, L. (2015). Observer-based open transistor fault diagnosis and fault-tolerant control of five-phase permanent magnet motor drive for application in electric vehicles. IET Power Electronics 8, 1, 76–87.

    Article  Google Scholar 

  • Salem, A. and Narimani, M. (2019). A review on multiphase drives for automotive traction applications. IEEE Trans. Transportation Electrification 5, 4, 1329–1348.

    Article  Google Scholar 

  • Song, Y. and Wang, B. (2013). Survey on reliability of power electronic systems. IEEE Trans. Power Electronics 28, 1, 591–604.

    Article  Google Scholar 

  • Strangas, E. G., Aviyente, S., Neely, J. D. and Zaidi, S. S. H. (2013). The effect of failure prognosis and mitigation on the reliability of permanent-magnet AC motor drives. IEEE Trans. Industrial Electronics 60, 8, 3519–3528.

    Article  Google Scholar 

  • Sul, S., Kwon, Y. and Lee, Y. (2017). Sensorless control of IPMSM for last 10 years and next 5 years. CES Trans. Electrical Machines and Systems 1, 2, 91–99.

    Article  Google Scholar 

  • Urresty, J., Riba, J. and Romeral, L. (2013). Influence of the stator windings configuration in the currents and zero-sequence voltage harmonics in permanent magnet synchronous motors with demagnetization faults. IEEE Trans. Magnetics 49, 8, 4885–4893.

    Article  Google Scholar 

  • Wang, G., Hao, X., Zhao, N., Zhang, G. and Xu, D. (2020). Current sensor fault-tolerant control strategy for encoderless PMSM drives based on single sliding mode observer. IEEE Trans. Transportation Electrification 6, 2, 679–689.

    Article  Google Scholar 

  • Wilson, S. D., Stewart, P. and Taylor, B. P. (2010). Methods of resistance estimation in permanent magnet synchronous motors for real-time thermal management. IEEE Trans. Energy Conversion 25, 3, 698–707.

    Article  Google Scholar 

  • Wu, C., Guo, C., Xie, Z., Ni, F. and Liu, H. (2018). A signal-based fault detection and tolerance control method of current sensor for PMSM drive. IEEE Trans. Industrial Electronics 65, 12, 9646–9657.

    Article  Google Scholar 

  • Xu, S., Chen, H., Dong, F. and Yang, J. (2019). Reliability analysis on power converter of switched reluctance machine system under different control strategies. IEEE Trans. Industrial Electronics 66, 8, 6570–6580.

    Article  Google Scholar 

  • Yang, S. C. (2016). Online turn fault detection of interior permanent-magnet machines using the pulsating-type voltage injection. IEEE Trans. Industry Applications 52, 3, 2340–2349.

    Article  Google Scholar 

  • Yang, S., Bryant, A., Mawby, P., Xiang, D., Ran, L. and Tavner, P. (2011). An industry-based survey of reliability in power electronic converters. IEEE Trans. Industry Applications 47, 3, 1441–1451.

    Article  Google Scholar 

  • Yang, S., Xiang, D., Bryant, A., Mawby, P., Ran, L. and Tavner, P. (2010). Condition monitoring for device reliability in power electronic converters: A review. IEEE Trans. Power Electronics 25, 11, 2734–2752.

    Article  Google Scholar 

  • Zafarani, M., Bostanci, E., Qi, Y., Goktas, T. and Akin, B. (2018). Interturn short-circuit faults in permanent magnet synchronous machines: An extended review and comprehensive analysis. IEEE J. Emerging and Selected Topics in Power Electronics 6, 4, 2173–2191.

    Article  Google Scholar 

  • Zafarani, M., Goktas, T., Akin, B. and Fedigan, S. E. (2017). An investigation of motor topology impacts on magnet defect fault signatures. IEEE Trans. Industrial Electronics 64, 1, 32–42.

    Article  Google Scholar 

  • Zhang, G., Wang, G., Yuan, B., Liu, R. and Xu, D. (2018). Active disturbance rejection control strategy for signal injection-based sensorless IPMSM drives. IEEE Trans. Transportation Electrification 4, 1, 330–339.

    Article  Google Scholar 

  • Zhang, W., Xu, D., Enjeti, P. N., Li, H., Hawke, J. T. and Krishnamoorthy, H. S. (2014). Survey on fault-tolerant techniques for power electronic converters. IEEE Trans. Power Electronics 29, 12, 6319–6331.

    Article  Google Scholar 

  • Zhao, W., Xu, L. and Liu, G. (2018). Overview of permanent-magnet fault-tolerant machines: Topology and design. CES Trans. Electrical Machines and Systems 2, 1, 51–64.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chinchul Choi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and Institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, C., Lee, W. Fault Diagnosis and Tolerance on Reliability of Automotive Motor Control System: A Review. Int.J Automot. Technol. 23, 1163–1174 (2022). https://doi.org/10.1007/s12239-022-0102-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12239-022-0102-2

Key Words

Navigation