Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1096))

Abstract

The chapter presents a review of faults and fault detection methods in electric drives. Typical faults are presented that arises for the induction motor, which is valued in the industry for its robust construction and cost-effective production. Moreover, a summary is presented of detectable faults in conjunction with the required physical information that allows detection of specific faults. In order to address faults of a complete drive system, characteristic failures of its mechanical parts are presented as well. Furthermore, the physical forces, which arise during specific faults (i.e. centrifugal, kinematic) are presented along with dominant harmonics in the frequency spectrum. These dominant harmonics are especially important for the determination of a malfunction of the drive. The detection of the particular could be performed with signal processing methods which are tabularly summarized for introduction purposes. In order to cover a further industry interest, a cost-effectiveness relation is presented, which describes whether a diagnostic system is appreciative or not. Moreover, most important international standards regarding safety, health for human and machinery are summarized that are required to be fulfilled in every industrial application. The next subsection is dedicated to the presentation of fault detection methods that include a review of conventional methods for monitoring the conditions of the electric machine. That includes the monitoring of variables that are based on electrical, chemical, mechanical and thermal changes in the induction motor. The last subsection considers the fault detection methods, which are based on utilization of mathematical models. In this kind of fault detection, the model description is utilized to identify changes in the drive system, which then can be used for a potential fault identification procedure. Such mathematical constructs are mainly based on observer, Kalman filters or neural networks. The chapter is concluded with a short summary of the presented sections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

MRAS:

Model Reference Adaptive System

FEM:

Finite Element Method

XRF:

X- Ray Fluorescence

MCSA:

Motor Current Signature Analysis

PD:

Power Density

References

  1. F. Blaschke, A new method for the structural decoupling of A.C. induction machines, in Conf. Rec. IFAC, (Düsseldorf Germany, 1971)

    Google Scholar 

  2. M. P. Kaźmierkowski, R. Krishnan, F. Blaabjerg, Control in Power Electronics: Selected Problems (Academic press, 2002)

    Google Scholar 

  3. M. Depenbrock, Direct self-control (DSC) of inverter-fed induction machine. IEEE Trans. Power Electron. 3(4), 420–429 (1988)

    Article  Google Scholar 

  4. Z. Krzeminski, Nonlinear control of induction motor, in 10th IFAC Congress on Automatic Control (1987), pp. 349–354

    Article  Google Scholar 

  5. IEEE Motor Reliability Working Group, Report of large motor reliability survey of industrial and commercial installations, part I. IEEE Trans. Ind. Appl. IA-21(4), 853–864 (1985)

    Google Scholar 

  6. IEEE Motor Reliability Working Group, Report of large motor reliability survey of industrial and commercial installations. IEEE Trans. Ind. Appl. IA-21(4), 153–158 (1986)

    Google Scholar 

  7. C.T. Kowalski, Drive system diagnosis with induction motor and use of artificial intelligence—Diagnostyka układów napędowych z silnikiem indukcyjnym z zastosowaniem metod sztucznej inteligencji—in Polish. Oficyna Wydawnictwa Politechniki Wrocławskiej (2013)

    Google Scholar 

  8. P. Zhang, Y. Du, T.G. Habetler, B. Lu, A survey of condition monitoring and protection methods for medium-voltage induction motors. IEEE Trans. Ind. Appl. 47(1), 34–46 (2011)

    Article  Google Scholar 

  9. D.U. Campos-Delgado, D.R. Espinoza-Trejo, E. Palacios, Fault-tolerant control in variable speed drives: a survey. IET Electr. Power Appl. 2(2), 121–134 (2008)

    Article  Google Scholar 

  10. L. Swędrowski, Measurement in squirrel cage induction motor diagnostic—Pomiary w diagnostyce silników indukcyjnych klatkowych—in Polish. Wydawnictwo Politechniki Gdańskiej (2013)

    Google Scholar 

  11. S.A. Mortazavizadeh, S.M.G. Mousavi, A review on condition monitoring and diagnostic techniques of rotating electrical machines. Phys. Sci. Int. J. 4(3), 310 (2014)

    Article  Google Scholar 

  12. A. Romanenko, Study of Inverter-Induced Bearing Damage Monitoring in Variable-Speed-Driven Motor Systems (Acta Univ, Lappeenrantaensis, 2017)

    Google Scholar 

  13. C. Radu, The most common causes of bearing failure and the importance of bearing lubrication. RKB Tech. Rev. 1–7 (2010)

    Google Scholar 

  14. C.M. Harris, A.G. Piersol, Harris’ Shock and Vibration Handbook (McGraw-Hill, 2002)

    Google Scholar 

  15. M. Blodt, P. Granjon, B. Raison, J. Regnier, Mechanical fault detection in induction motor drives through stator current monitoring-Theory and application examples, in Fault detection, InTech (2010)

    Google Scholar 

  16. T.-J. Kang, C. Yang, Y. Park, D. Hyun, S.B. Lee, M. Teska, Electrical monitoring of mechanical defects in induction motor-driven V-belt–pulley speed reduction couplings. IEEE Trans. Ind. Appl. 54(3), 2255–2264 (2018)

    Article  Google Scholar 

  17. D. He, R. Li, A new vibration signal processing method for gearbox fault detection, in 2011 IEEE Conference on Prognostics and Health Management (PHM) (2011), pp. 1–5

    Google Scholar 

  18. J. Arellano-Padilla, M. Sumner, C. Gerada, L. Jing, A novel approach to gearbox condition monitoring by using drive rectifier input currents, in 13th European Conference on Power Electronics and Applications, 2009. EPE’09 (2009), pp. 1–10

    Google Scholar 

  19. N. J. Wismer, Gearbox analysis using cepstrum analysis and comb liftering, Appl. Note Brüel Kjaer Den. (1994)

    Google Scholar 

  20. N. Saravanan, K.I. Ramachandran, Incipient gear box fault diagnosis using discrete wavelet transform (DWT) for feature extraction and classification using artificial neural network (ANN). Expert Syst. Appl. 37(6), 4168–4181 (2010)

    Article  Google Scholar 

  21. L. Gelman, N.H. Chandra, R. Kurosz, F. Pellicano, M. Barbieri, A. Zippo, Novel spectral kurtosis technology for adaptive vibration condition monitoring of multi-stage gearboxes. Insight—Non-Destr. Test. Cond. Monit. 58(8), 409–416 (2016)

    Article  Google Scholar 

  22. L. Gelman, K. Solinski, B. Shaw, M. Vaidhianathasamy, Vibration diagnosis of a gearbox by wavelet bicoherence technology. Insight—Non-Destr. Test. Cond. Monit. 59(8), 440–444 (2017)

    Article  Google Scholar 

  23. R. Zhang, F. Gu, H. Mansaf, T. Wang, A.D. Ball, Gear wear monitoring by modulation signal bispectrum based on motor current signal analysis. Mech. Syst. Signal Process. 94, 202–213 (2017)

    Article  Google Scholar 

  24. C. Hu, W.A. Smith, R.B. Randall, Z. Peng, Development of a gear vibration indicator and its application in gear wear monitoring. Mech. Syst. Signal Process. 76–77, 319–336 (2016)

    Article  Google Scholar 

  25. J. Zhang, J.S. Dhupia, C.J. Gajanayake, Stator current analysis from electrical machines using resonance residual technique to detect faults in planetary gearboxes. IEEE Trans. Ind. Electron. 62(9), 5709–5721 (2015)

    Article  Google Scholar 

  26. S.H. Kia, H. Henao, G.-A. Capolino, Gear tooth surface damage fault detection using induction machine stator current space vector analysis. IEEE Trans. Ind. Electron. 62(3), 1866–1878 (2015)

    Article  Google Scholar 

  27. S.H. Kia, H. Henao, G.-A. Capolino, Fault index statistical study for gear fault detection using stator current space vector analysis. IEEE Trans. Ind. Appl. 52(6), 4781–4788 (2016)

    Article  Google Scholar 

  28. International Organization for Standardization, ISO 2631-1:1997 Mechanical vibration and shock—Evaluation of human exposure to whole-body vibration—Part 1: General requirements

    Google Scholar 

  29. International Organization for Standardization, ISO 2631-2:2003 Mechanical vibration and shock—Evaluation of human exposure to whole-body vibration—Part 2: Vibration in buildings (1–80 Hz)

    Google Scholar 

  30. International Organization for Standardization, ISO 5349-1:2001 Mechanical vibration—Measurement and evaluation of human exposure to hand-transmitted vibration—Part 1: General requirements

    Google Scholar 

  31. International Organization for Standardization, ISO 5349-2:2001 Mechanical vibration—Measurement and evaluation of human exposure to hand-transmitted vibration—Part 2: Practical guidance for measurement at the workplace

    Google Scholar 

  32. International Organization for Standardization, ISO 18434-1:2008 Condition monitoring and diagnostics of machines—Thermography—Part 1: General procedures

    Google Scholar 

  33. International Organization for Standardization, ISO 18436-2:2014 Condition monitoring and diagnostics of machines—Requirements for qualification and assessment of personnel—Part 2: Vibration condition monitoring and diagnostics

    Google Scholar 

  34. International Organization for Standardization, ISO 13379-1:2012 Condition monitoring and diagnostics of machines—Data interpretation and diagnostics techniques—Part 1: General guidelines

    Google Scholar 

  35. International Organization for Standardization, ISO 13374-1:2003 Condition monitoring and diagnostics of machines—Data processing, communication and presentation—Part 1: General guidelines

    Google Scholar 

  36. P.J. Tavner (ed.), Condition Monitoring of Rotating Electrical Machines (Institution of Engineering and Technology, London, U.K, 2008)

    Google Scholar 

  37. D. Karkosiński, Vibroaccustic Occurances in Asynchron Squirrel Cage Motors—Zjawiska wibroakustyczne w asynchronicznych silnikach klatkowych—in Polish. Wydawnictwo Politechniki Gdańskej (2006)

    Google Scholar 

  38. F. Salazar-Villanueva, O.G. Ibarra-Manzano, Spectral analysis for identifying faults in induction motors by means of sound, in CONIELECOMP 2013, 23rd International Conference on Electronics, Communications and Computing (2013), pp. 149–153

    Google Scholar 

  39. A. Glowacz, W. Glowacz, Z. Glowacz, J. Kozik, Early fault diagnosis of bearing and stator faults of the single-phase induction motor using acoustic signals. Measurement 113, 1–9 (2018)

    Article  Google Scholar 

  40. H. Akcay, E. Germen, Identification of acoustic spectra for fault detection in induction motors. AFRICON 2013, 1–5 (2013)

    Google Scholar 

  41. G. Singh, T.C. Anil Kumar, V.N.A. Naikan, Induction motor inter turn fault detection using infrared thermographic analysis. Infrared Phys. Technol. 77, 277–282 (2016)

    Article  Google Scholar 

  42. D. Lopez-Perez, J. Antonino-Daviu, Application of infrared thermography to failure detection in industrial induction motors: case stories. IEEE Trans. Ind. Appl. 53(3), 1901–1908 (2017)

    Article  Google Scholar 

  43. S. Karmakar, S. Chattopadhyay, M. Mitra, S. Sengupta, Induction Motor Fault Diagnosis (Springer Singapore, Singapore, 2016)

    Book  Google Scholar 

  44. A.M. Da Silva, Induction Motor Fault Diagnostic and Monitoring Methods (Marquette University, 2006)

    Google Scholar 

  45. T. Ghanbari, Autocorrelation function-based technique for stator turn-fault detection of induction motor. IET Sci. Meas. Technol. 10(2), 100–110 (2016)

    Article  Google Scholar 

  46. M. Riera-Guasp, J.A. Antonino-Daviu, G.-A. Capolino, Advances in electrical machine, power electronic, and drive condition monitoring and fault detection: state of the art. IEEE Trans. Ind. Electron. 62(3), 1746–1759 (2015)

    Article  Google Scholar 

  47. J. Kim, S. Shin, S.B. Lee, K.N. Gyftakis, M. Drif, A.J.M. Cardoso, Power spectrum-based detection of induction motor rotor faults for immunity to false alarms. IEEE Trans. Energy Convers. 30(3), 1123–1132 (2015)

    Article  Google Scholar 

  48. M. Kang, J.M. Kim, Reliable fault diagnosis of multiple induction motor defects using a 2-D representation of Shannon wavelets. IEEE Trans. Magn. 50(10), 1–13 (2014)

    Article  Google Scholar 

  49. O. Moseler, R. Isermann, Model-based fault detection for a brushless DC motor using parameter estimation, in Proceedings of the 24th Annual Conference of the IEEE on Industrial Electronics Society, 1998. IECON’98, vol. 4 (1998), pp. 1956–1960

    Google Scholar 

  50. R. Isermann, Fault-Diagnosis Systems: an Introduction from Fault Detection to Fault Tolerance (Springer, Berlin; New York, 2006)

    Book  Google Scholar 

  51. M. Blanke, J. Schröder (eds.), Diagnosis and Fault-Tolerant Control, 2nd edn. (Springer, Berlin; New York, 2006)

    MATH  Google Scholar 

  52. R. Isermann, Fault-Diagnosis Applications (Springer, Berlin Heidelberg, 2011)

    Book  Google Scholar 

  53. J. Chen, R.J. Patton, Robust Model-Based Fault Diagnosis for Dynamic Systems, vol. 3 (Springer, US, Boston, MA, 1999)

    Book  Google Scholar 

  54. A. Singh, B. Grant, R. DeFour, C. Sharma, S. Bahadoorsingh, A review of induction motor fault modeling. Electr. Power Syst. Res. 133, 191–197 (2016)

    Article  Google Scholar 

  55. P. Kołodziejek, Induction Motor Rotor Fault Identification with Sensorless Control System for Diagnostic Purposes—Identyfikacja uszkodzeń wirnika silnika indukcyjnego z bezczujnikowym układem regulacji dla celów diagnostycznych—in Polish, Gdańsk University of Technology, Gdańsk (2009)

    Google Scholar 

  56. C.S. Kallesoe, V. Cocquempot, R. Izadi-Zamanabadi, Model based fault detection in a centrifugal pump application. IEEE Trans. Control Syst. Technol. 14(2), 204–215 (2006)

    Article  Google Scholar 

  57. K. Ohishi, K. Nakano, I. Miyashita, S. Yasukawa, Anti-slip control of electric motor coach based on disturbance observer, in 1998 5th International Workshop on Advanced Motion Control, 1998. AMC’98-Coimbra (1998), pp. 580–585

    Google Scholar 

  58. J. Guzinski, M. Diguet, Z. Krzeminski, A. Lewicki, H. Abu-Rub, Application of speed and load torque observers in high-speed train drive for diagnostic purposes. IEEE Trans. Ind. Electron. 56(1), 248–256 (2009)

    Article  Google Scholar 

  59. S. Benmoussa, M.A. Djeziri, Remaining useful life estimation without needing for prior knowledge of the degradation features. IET Sci. Meas. Technol. 11(8), 1071–1078 (2017)

    Article  Google Scholar 

  60. H. Torkaman, E. Afjei, Sensorless method for eccentricity fault monitoring and diagnosis in switched reluctance machines based on stator voltage signature. IEEE Trans. Magn. 49(2), 912–920 (2013)

    Article  Google Scholar 

  61. C. Kral, F. Pirker, G. Pascoli, Model-based detection of rotor faults without rotor position sensor—the sensorless vienna monitoring method. IEEE Trans. Ind. Appl. 41(3), 784–789 (2005)

    Article  Google Scholar 

  62. D. Miljković, Fault detection methods: a literature survey, in MIPRO, 2011 Proceedings of the 34th International Convention (2011), pp. 750–755

    Google Scholar 

  63. C.T. Kowalski, Monitoring and fault diagnosis of induction motors with neural networks—Monitorowanie i diagnostyka uszkodzeń silników indukcyjnych z wykorzystaniem sieci neuronowych—in Polish,” Pr. Nauk. Inst. Masz. Napędów Pomiarów Elektr. Politech. Wroc. Monogr. vol. 57, nr 18 (2005)

    Google Scholar 

  64. J. Lunze, Control Systems II—Regelungstechnik 2—in German (Springer, Berlin Heidelberg, Berlin, Heidelberg, 2010)

    Book  Google Scholar 

  65. H. Unbehauen, Control Systems II—Regelungstechnik II—in German (Vieweg + Teubner, Wiesbaden, 2009)

    Google Scholar 

  66. C. Kral, F. Pirker, G. Pascoli, H. Kapeller, Robust rotor fault detection by means of the vienna monitoring method and a parameter tracking technique. IEEE Trans. Ind. Electron. 55(12), 4229–4237 (2008)

    Article  Google Scholar 

  67. D.F. Leite, M.V. Arauijo, L. Secco, P. Costa, Induction Motors Modeling and Fuzzy Logic Based Turn-To-Turn Fault Detection and Localization (2007), pp. 90–95

    Google Scholar 

  68. W. Xu-hong, H. Yi-gang, Fuzzy Model based On-line Stator Winding Turn Fault Detection for Induction Motors (2006), pp. 2272–2276

    Google Scholar 

  69. A. Wolfram, R. Isermann, Fault detection of inverter-fed induction motors using a multi-model approach based on neuro-fuzzy models, in 2001 European Control Conference (ECC) (2001), pp. 1367–1372

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Centre of Poland grant no. 2015/19/N/ST7/03078.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick D. Strankowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Strankowski, P.D., Guziński, J. (2020). Faults and Fault Detection Methods in Electric Drives. In: Malik, H., Iqbal, A., Yadav, A. (eds) Soft Computing in Condition Monitoring and Diagnostics of Electrical and Mechanical Systems. Advances in Intelligent Systems and Computing, vol 1096. Springer, Singapore. https://doi.org/10.1007/978-981-15-1532-3_2

Download citation

Publish with us

Policies and ethics