Skip to main content
Log in

Effective Steering Assistance Control by External Information Feedback

  • Published:
International Journal of Automotive Technology Aims and scope Submit manuscript

Abstract

In this research, recognition sensors are used for tracking the outside world along with a steering assistance model that reduces delays inherent in the human cognition, decision, and operation decision-making chain, thereby minimizing vehicle behavior delay with respect to the vehicle position and steering wheel angle based on a read-ahead effect. Additionally, the creation of an emergency avoidance assistance program based on obstacle detection and a cornering assistance program based on white line detection are reported. The effectiveness of these programs using a driving simulator and a model vehicle was investigated. It was found that when the emergency avoidance assist provided by the obstacle detection program was used, the automatic override function was capable of successfully intervening to prevent accidents in situations where it determined that manual steering operations by the driver would be too late. Additionally, in experiments involving cornering assistance by white line detection, it is found that smoother steering around curves was facilitated by the system's ability to set up a optimal approach earlier than could be expected by the curve recognition processes used by human drivers, and that the vehicle was more stable at the curve exit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Hayashi, H., Inomata, R., Fujishiro, R., Ouchi, Y., Suzuki, K. and Nanami, T. (2013). Development of pre-crash safety system with pedestrian collision avoidance assist. Proc. 23rd Int. Technical Conf. Enhanced Safety of Vehicles (ESV), Seoul, Korea.

    Google Scholar 

  • Levinson, J., Askeland, J., Becker, J., Dolson, J., Held, D., Kammel, S., Kolter, J., Langer, D. and Pinvi, O. (2011). Towards fully autonomous driving systems and algorithms. Proc. IEEE Intelligent Vehicle Symp., Baden-Baden, Germany.

    Google Scholar 

  • Mc Donald, J. B. (2001). Application of the hough transform to lane detection and following on high speed roads. Proc. Irish Signals and Systems Conf.

    Google Scholar 

  • Ogawa, T. (2006). Lane recognition using on-vehicle LIDAR. Proc. IEEE Intelligent Vehicles Symp., Tokyo, Japan.

    Google Scholar 

  • Singh, S. (2015). Critical Reasons for Crashes Investigated in the National Motor Vehicle Crash Causation Survey. Traffic Safety Facts Crash-Stats. Report No. DOT-HS- 812-115. National Highway Traffic Safety Administration.

    Google Scholar 

  • Stein, G. (2012). Collision-avoiding vehicle equipped with monocular camera. Nikkei Electronics, 1085, 71–78.

    Google Scholar 

  • Ziegler, J., Lategahn, H., Schreiber, M., Keller, C. G., Knoppel, C., Hipp, J., Haueis, M. and Stiller, C. (2014). Video based localization for BERTHA. IEEE Intelligent Vehicles Symp. Proc, Dearborn, Michigan, USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiromichi Nozaki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamaguchi, R., Nozaki, H. Effective Steering Assistance Control by External Information Feedback. Int.J Automot. Technol. 20, 1237–1243 (2019). https://doi.org/10.1007/s12239-019-0115-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12239-019-0115-7

Keywords

Navigation