Skip to main content
Log in

Experimental study of an electro-mechanical CVT ratio controller

  • Published:
International Journal of Automotive Technology Aims and scope Submit manuscript

Abstract

This paper introduces an electro-mechanical, dual acting pulley, continuously variable transmission (EMDAPCVT) and presents its real time ratio controller using a proportional-derivative-plus-conditional-integral (PDPCI) controller. The ratio controller system is developed based on primary (input) and secondary (output) pulley position controllers. Each position controller has two PID parameters, releasing and clamping, which are determined experimentally using a relay feedback method. A PC-based ratio controller system is implemented using Matlab/Simulink® software and a Keithley DAS-1602 data acquisition system card. The experimental results show that the PDPCI controller system can control the CVT ratio adequately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ariyono, S., Tawi, K. B., Jamaluddin, H., Hussein, M. and Supriyo, B. (2007). Adaptive neural network optimisation control of ICE for vehicle with continuously variable transmission. Int. Conf. Intelligent and Advanced Systems, Kuala Lumpur, Malaysia.

    Google Scholar 

  • Asano, K. (2004). Koyo’s approach to continuously variable transmissions (CVT) for automobiles. Koyo Engineering J. English edn. 1(164E), 14–18.

    Google Scholar 

  • Åström, K. J. and Hägglund, T. (1984). Automatic tuning of simple regulators with specifications on phase and amplitude margins. Automatica 20,5, 645–651.

    Article  MathSciNet  MATH  Google Scholar 

  • Bonsen, B., Klaassen, T. W. G. L., van de Meerakker, K. G. O., Steinbuch, M. and Veenhuizen, P. A. (2004). Measurement and control of slip in a continuously variable transmission. Proc. 3rd IFAC Symp. Mechatronic Systems, Sydney, Australia.

    Google Scholar 

  • Cervantes, I. and Alvarez-Ramirez, J. (2001). On the PID tracking control of robot manipulators. Systems and Control Letters 42,1, 37–46.

    Article  MathSciNet  MATH  Google Scholar 

  • Fushimi, Y., Fujii, T. and Kanehara, S. (1996). A numerical approach to analyse the power transmitting mechanisms of a metal pushing V-belt type CVT. SAE Paper No. 960720.

    Google Scholar 

  • Ho, W. K., Gan, O. P., Tay, E. B. and Ang, E. L. (1996). Performance and gain and phase margins of well known PID tuning formulas. IEEE Trans. Control Systems Technology 4,4, 473–477.

    Article  Google Scholar 

  • Ide, T. (2000). Effect of belt loss and oil pump loss on the fuel economy of a vehicle with a metal V-belt CVT. Seoul 2000 FISITA World Automotive Cong., Seoul, Korea.

    Google Scholar 

  • Jayabalan, R. and Emadi, A. (2004). Acceleration support by integrated starter/alternator for automotive applications. Proc. IMechE, Part D: J. Automobile Engineering 218,1, 987–993.

    Article  Google Scholar 

  • Jianghua, X. and Huihe, S. (2003). A novel method of PID tuning for integrating processes. Proc. 42nd IEEE Conf. Decision and Control, Maui, Hawai, USA.

    Google Scholar 

  • Kanehara, S., Fujii, T. and Oono, S. (1996). A study of a metal pushing V-belt type CVT: Macroscopic consideration for coefficient of friction between belt and pulley. SAE Paper No. 9636277.

    Google Scholar 

  • Klaassen, T. W. G. L., Bonsen, B., van de Meerakker, K. G. O., Steinbuch, M., Veenhuizen, P. A. and Veldpaus, F. E. (2004). Nonlinear stabilization of slip in a continuously variable transmission. Proc. 2004 IEEE Int. Conf. Control Applications, Taipei, Taiwan.

    Google Scholar 

  • Lee, H. and Kim, H. (2005). Improvement of fuel economy for a parallel hybrid electric vehicle by continuously variable transmission ratio control. Proc. IMechE, Part D: J. Automobile Engineering 219,1, 43–52.

    Article  Google Scholar 

  • Lutsey, N. and Sperling, D. (2006). Energy efficiency, fuel economy, and policy implications. J. Transportation Research Board, 1942 (2005), 8–17.

    Article  Google Scholar 

  • Matthes, B. (2005). Dual clutch transmission-lessons learned and future potential. SAE Paper No. 2005-01-1021.

    Google Scholar 

  • Micklem, J. D., Longmore, D. K. and Burrows, C. R. (1996). The magnitude of the losses in the steel pushing V-belt continuously variable transmission. Proc. IMechE, Part D: J. Automobile Engineering 210 1, 57–62.

    Article  Google Scholar 

  • Pulles, R. J., Bonsen, B., Steinbuch, M. and Veenhuizen, P. A. (2005). Slip controller design and implementation in a continuously variable transmission. Proc. 2005 American Control Conf., Portland, Oregon, USA.

    Google Scholar 

  • Robertson, A. J. and Tawi, K. B. (1997). Misalignment equation for the van doorne metal pushing V-belt continuously variable transmission. Proc. IMechE, Part D: J. Automobile Engineering 211,1, 121–128.

    Article  Google Scholar 

  • Ryu, W. and Kim, H. (2008). CVT ratio control with consideration of CVT system loss. Int. J. Automotive Technology 9,4, 459–465.

    Article  MathSciNet  Google Scholar 

  • Valério, D. and DaCosta, J. S. (2006). Tuning of fractional PID controllers with ziegler-nichols-type rules. Signal Processing 86,10, 2771–2784.

    Article  MATH  Google Scholar 

  • Visioli, A. (2003). Modified anti-windup scheme for PID controllers. IEE Proc., Control Theory and Applications 150,1, 49–54.

    Article  Google Scholar 

  • Yeo, H., Song, C. H., Kim, C. S. and Kim, H. S. (2004). Hardware in the loop simulation of hybrid vehicle for optimal engine operation by CVT ratio control. Int. J. Automotive Technology 5,3, 201–208.

    Google Scholar 

  • Yuxin, S., Dong, S., Lu, R. and Mills, J. K. (2006). Integration of saturated PI synchronous control and PD feedback for control of parallel manipulators. IEEE Trans. Robotics 22,1, 202–207.

    Article  Google Scholar 

  • Zang, F. (2009). Study of the electro-hydraulic control system for CVT metal belt axial-misalignment. Int. Conf. Mechatronics and Automation, Changchun, China.

    Google Scholar 

  • Zang, F. (2010). Simulation and fuzzy control study on the CVT metal V belt axial misalignment of car. Key Engineering Materials, 426–427(1), 97–101.

    Article  Google Scholar 

  • Zang, F. and Wu, Z. (2009). Control study on the CVT metal V-belt’s axial-misalignment of car. IEEE Intelligent Vehicles Symp., Xi’an, Shaanxi, China.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Supriyo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Supriyo, B., Tawi, K.B. & Jamaluddin, H. Experimental study of an electro-mechanical CVT ratio controller. Int.J Automot. Technol. 14, 313–323 (2013). https://doi.org/10.1007/s12239-013-0035-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12239-013-0035-x

Key Words

Navigation