Skip to main content
Log in

Integrated Assessment of Coastal Vulnerability in the Bonny Bay: A Combination of Traditional Methods (Simple and AHP) and Machine Learning Approach

  • Coastal Vulnerability in West and Central Africa
  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

The coast of Cameroon, located at the bottom of the Gulf of Guinea, is confronted with coastal hazards whose magnitude, distribution, and consequences are currently largely underestimated if not poorly understood. This study aims to fill this gap by proposing an integrated approach to coastal vulnerability assessment, combining simple traditional methods, multicriteria AHP (analytic hierarchy process) analysis, and machine learning techniques. Using geospatial data, field observations, and numerical models, we assessed the 402-km Cameroon coastline, taking into account interactions between physical, geological, and socio-economic factors. The results highlight geomorphology, slope, coastal erosion, and population density as the main contributors to vulnerability. The Integrated Coastal Vulnerability Index (IVCI) calculated by the simple method shows variable levels of vulnerability, with a predominance of “very low” and “low” in the northern sectors (S1 = 58%, S2 = 99%, and S3 = 87%) and “high” and “very high” in the south (S4 = 58% and S5 = 61%). The AHP method reveals a more balanced distribution of vulnerability levels, highlighting a sector (S3 = 96%) at “very strong” and “strong” risk. The application of six machine learning algorithms shows good predictive capabilities for ICVI, with the exception of the support vector machine (SVM). The artificial neural network (ANN) algorithm stands out for its superior accuracy, with an F-score of 0.9, ability to explain data variance (R = 0.95), accurate predictions (RMSE = 0.2), and excellent ability to distinguish classes (kappa coefficient of 0.9 and ROC AUC of 0.9). This study emphasizes the magnitude and complexity of interactions as indicators of the susceptibility of coastal populations to vulnerability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The data used in this study include both freely available data and data with restricted access. The freely accessible data can be downloaded from the link available in the manuscript. Restricted or sensitive data are available on request, subject to confidentiality conditions and prior agreements with data providers.

References

  • Abessolo, G.O., L.X. Hoan, M. Larson, and R. Almar. 2021. Modeling the Bight of Benin (Gulf of Guinea, West Africa) coastline response to natural and anthropogenic forcing. Regional Studies in Marine Science 48. https://doi.org/10.1016/j.rsma.2021.101995.

    Article  Google Scholar 

  • Abessolo Ondoa, G. (2020). Réponse des plages sableuses d’Afrique de l’Ouest, golfe de Guinée, face au forçage multi-échelle [These de doctorat, Toulouse 3]. https://www.theses.fr/2020TOU30029..

  • Addo, K.A. 2013. Assessing Coastal Vulnerability Index to climate change : The case of Accra – Ghana. Journal of Coastal Research 165: 1892–1897. https://doi.org/10.2112/SI65-320.1.

    Article  Google Scholar 

  • Adopo, K.L., K.L. Kouassi, and A.V.-I. WOGNIN. 2008. Spatial distribution and characterisation of the sediments of the estuary of Comoe River (GrandBassam, Côte D’ivoire). European Journal of Scientific Research 20 (4): 817–827.

    Google Scholar 

  • Aguilar, E., A. Aziz Barry, M. Brunet, L. Ekang, A. Fernandes, M. Massoukina, J. Mbah, A. Mhanda, and doNascimento, D. J., Peterson, T. C., Thamba Umba, O., Tomou, M., & Zhang, X. 2009. Changes in temperature and precipitation extremes in western central Africa, Guinea Conakry, and Zimbabwe, 1955–2006. Journal of Geophysical Research: Atmospheres 114 (D2). https://doi.org/10.1029/2008JD011010.

  • Almar, R., E. Kestenare, J. Reyns, J. Jouanno, E.J. Anthony, R. Laibi, M. Hemer, Y. Du Penhoat, and R. Ranasinghe. 2015. Response of the Bight of Benin (Gulf of Guinea, West Africa) coastline to anthropogenic and natural forcing, Part1: Wave climate variability and impacts on the longshore sediment transport. Continental Shelf Research 110: 48–59. https://doi.org/10.1016/j.csr.2015.09.020.

    Article  Google Scholar 

  • Almar, R., R. Ranasinghe, E.W.J. Bergsma, H. Diaz, A. Melet, F. Papa, M. Vousdoukas, P. Athanasiou, O. Dada, L.P. Almeida, and E. Kestenare. 2021. A global analysis of extreme coastal water levels with implications for potential coastal overtopping. Nature Communications 12 (1): 3775. https://doi.org/10.1038/s41467-021-24008-9.

    Article  CAS  Google Scholar 

  • Almar, R., T. Stieglitz, K.A. Addo, K. Ba, G.A. Ondoa, E.W.J. Bergsma, F. Bonou, O. Dada, D. Angnuureng, and O. Arino. 2023. Coastal zone changes in West Africa : Challenges and opportunities for satellite earth observations. Surveys in Geophysics 44 (1): 249–275. https://doi.org/10.1007/s10712-022-09721-4.

    Article  Google Scholar 

  • Almar, R., J. Boucharel, M. Graffin, G.O. Abessolo, G. Thoumyre, F. Papa, R. Ranasinghe, J. Montano, E.W.J. Bergsma, M.W. Baba, and F.-F. Jin. 2023. Influence of El Niño on the variability of global shoreline position. Nature Communications 14: 3133. https://doi.org/10.1038/s41467-023-38742-9.

    Article  CAS  Google Scholar 

  • Almar, R., N. Hounkonnou, E.J. Anthony, B. Castelle, N. Senechal, R. Laibi, T. Mensah-Senoo, G. Degbe, M. Quenum, M. Dorel, R. Chuchla, J.-P. Lefebvre, Y. du Penhoat, W.S. Laryea, G. Zodehougan, Z. Sohou, K.A. Addo, R. Ibaceta, and E. Kestenare. 2014. The Grand Popo beach 2013 experiment, Benin, West Africa : from short timescale processes to their integrated impact over long-term coastal evolution. Journal of Coastal Research 70 (sp1). https://doi.org/10.2112/SI70-110.1.

  • Angnuureng, D., R. Adade, E. Chuku, S. Awiah Dzantor, E. Brempong, and P. Mattah. 2023. Effects of coastal protection structures in controlling erosion and livelihoods. Heliyon 9. https://doi.org/10.1016/j.heliyon.2023.e20633.

    Article  Google Scholar 

  • Anthony, E., R. Almar, and T. Aagaard. 2016. Recent shoreline changes in the Volta River delta, West Africa : The roles of natural processes and human impacts. African Journal of Aquatic Science 41 (1): 81–87. https://doi.org/10.2989/16085914.2015.1115751.

    Article  Google Scholar 

  • Anthony, E.J., R. Almar, M. Besset, J. Reyns, R. Laibi, R. Ranasinghe, G. Abessolo Ondoa, and M. Vacchi. 2019. Response of the Bight of Benin (Gulf of Guinea, West Africa) coastline to anthropogenic and natural forcing, Part 2: Sources and patterns of sediment supply, sediment cells, and recent shoreline change. Continental Shelf Research 173: 93–103. https://doi.org/10.1016/j.csr.2018.12.006.

    Article  Google Scholar 

  • Anthony, E. J. 2015. Patterns of sand spit development and their management implications on deltaic, drift-aligned coasts : the cases of the Senegal and Volta River Delta Spits, West Africa. Sand and Gravel Spits 21‑36. https://doi.org/10.1007/978-3-319-13716-2_2.

  • Appeaning Addo, K., M. Walkden, and J.P. Mills. 2008. Detection, measurement and prediction of shoreline recession in Accra, Ghana. ISPRS Journal of Photogrammetry and Remote Sensing 63 (5): 543–558. https://doi.org/10.1016/j.isprsjprs.2008.04.001.

    Article  Google Scholar 

  • Ariffin, E.H., M.J. Mathew, A. Roslee, A. Ismailluddin, L.S. Yun, A.B. Putra, K.M.K.K. Yusof, M. Menhat, I. Ismail, H.A. Shamsul, D. Menier, N.H.M. Ghazali, and L.H. Lee. 2023. A multi-hazards Coastal Vulnerability Index of the east coast of Peninsular Malaysia. International Journal of Disaster Risk Reduction 84. https://doi.org/10.1016/j.ijdrr.2022.103484.

    Article  Google Scholar 

  • Battjes, J.A., and J.P.F.M. Janssen. 1978. Energy loss and setup due to breaking of random waves. Proceedings of the ASCE International Conference on Coastal Engineering, Hamburg, Germany 1978: 569–587.

    Google Scholar 

  • Bertin, X., B. Castelle, E. Chaumillon, R. Butel, and R. Quique. 2008. Longshore transport estimation and inter-annual variability at a high-energy dissipative beach : St. Trojan beach, SW Oléron Island, France. Continental Shelf Research 28 (10): 1316–1332. https://doi.org/10.1016/j.csr.2008.03.005.

    Article  Google Scholar 

  • Birol, F., N. Fuller, F. Lyard, M. Cancet, F. Niño, C. Delebecque, S. Fleury, F. Toublanc, A. Melet, M. Saraceno, and F. Léger. 2017. Coastal applications from nadir altimetry : Example of the X-TRACK regional products. Advances in Space Research 59 (4): 936–953. https://doi.org/10.1016/j.asr.2016.11.005.

    Article  Google Scholar 

  • Breiman, L. 2001. Random Forests. Machine Learning 45 (1): 5–32. https://doi.org/10.1023/A:1010933404324.

    Article  Google Scholar 

  • Bricquet, J.P., F. Bamba, G. Mahé, M. Touré, and J.-C. Olivry. 1997. Evolution récente des ressources en eau de l’Afrique Atlantique. Revue Des Sciences De L’eau 3: 321–337.

    Google Scholar 

  • Brooks, N., W.N. Adger, and P.M. Kelly. 2005. The determinants of vulnerability and adaptive capacity at the national level and the implications for adaptation. Global Environmental Change 15 (2): 151–163. https://doi.org/10.1016/j.gloenvcha.2004.12.006.

    Article  Google Scholar 

  • Burges, C.J.C. 1998. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 2 (2): 121–167. https://doi.org/10.1023/A:1009715923555.

    Article  Google Scholar 

  • Caires, S., and A. Sterl. 2005. 100-year return value estimates for ocean wind speed and significant wave height from the ERA-40 Data. Journal of Climate 18 (7): 1032–1048. https://doi.org/10.1175/JCLI-3312.1.

    Article  Google Scholar 

  • Carrère, L., F. Lyard, M. Cancet, and A. Guillot. 2015, avril 1. FES 2014, a new tidal model on the global ocean with enhanced accuracy in shallow seas and in the Arctic region. https://www.semanticscholar.org/paper/FES-2014,-a-new-tidal-model-on-the-global-ocean-in-Carr%C3%A8re-Lyard/bd55b723f3061a75008d58b66cfee5f1bb2a529b.

  • Cazenave, A., Y. Gouzenes, F. Birol, F. Leger, M. Passaro, F.M. Calafat, A. Shaw, F. Nino, J.F. Legeais, J. Oelsmann, M. Restano, and J. Benveniste. 2022. Sea level along the world’s coastlines can be measured by a network of virtual altimetry stations. Communications Earth & Environment 3 (1). https://doi.org/10.1038/s43247-022-00448-z.

  • Charuka, B., D.B. Angnuureng, E.K. Brempong, S.K.M. Agblorti, and K.T. Antwi Agyakwa. 2023. Assessment of the integrated Coastal Vulnerability Index of Ghana toward future coastal infrastructure investment plans. Ocean & Coastal Management 244. https://doi.org/10.1016/j.ocecoaman.2023.106804.

    Article  Google Scholar 

  • Cooper, J.A.G., and O.H. Pilkey. 2004. Sea-level rise and shoreline retreat : Time to abandon the Bruun Rule. Global and Planetary Change 43 (3): 157–171. https://doi.org/10.1016/j.gloplacha.2004.07.001.

    Article  Google Scholar 

  • Cutter, S.L., B.J. Boruff, and W.L. Shirley. 2003. Social vulnerability to environmental hazards. Social Science Quarterly 84 (2): 242–261. https://doi.org/10.1111/1540-6237.8402002.

    Article  Google Scholar 

  • Dada, O.A., L. Qiao, D. Ding, G. Li, Y. Ma, and L. Wang. 2015. Evolutionary trends of the Niger Delta shoreline during the last 100years : Responses to rainfall and river discharge. Marine Geology 367: 202–211. https://doi.org/10.1016/j.margeo.2015.06.007.

    Article  Google Scholar 

  • Dada, O.A., G. Li, L. Qiao, D. Ding, Y. Ma, and J. Xu. 2016. Seasonal shoreline behaviours along the arcuate Niger Delta coast : Complex interaction between fluvial and marine processes. Continental Shelf Research 122: 51–67. https://doi.org/10.1016/j.csr.2016.03.002.

    Article  Google Scholar 

  • Dada, O.A., G. Li, L. Qiao, Y.A. Asiwaju-Bello, and A.Y.B. Anifowose. 2018. Recent Niger Delta shoreline response to Niger River hydrology : Conflict between forces of nature and humans. Journal of African Earth Sciences 139: 222–231. https://doi.org/10.1016/j.jafrearsci.2017.12.023.

    Article  Google Scholar 

  • Dada, O.A., R. Almar, P. Morand, E.W.J. Bergsma, D.B. Angnuureng, and P.S.J. Minderhoud. 2023. Future socioeconomic development along the West African coast forms a larger hazard than sea level rise. Communications Earth & Environment 4(1). https://doi.org/10.1038/s43247-023-00807-4.

  • Dada, O.A., R. Almar, and P. Morand. (2024). Coastal vulnerability assessment of the West African coast to flooding and erosion. Scientific Reports 14(1). https://doi.org/10.1038/s41598-023-48612-5.

  • Dawson, C.W., and R.L. Wilby. 2001. Hydrological modelling using artificial neural networks. Progress in Physical Geography: Earth and Environment 25 (1): 80–108. https://doi.org/10.1177/03091333010250010:4.

    Article  Google Scholar 

  • Din, N., V. Ngomassou, G. Essome Koum, E. Ndema-Nsombo, E. Kotte Mapoko, and L. Nyamsi Moussian.  (2017). Impact of urbanization on the evolution of mangrove ecosystems in the Wouri River Estuary (Douala Cameroon) (p. 81‑131). https://doi.org/10.1007/978-3-319-56179-0_3.

  • Ennouali, Z., Y. Fannassi, G. Lahssini, A. Benmohammadi, and A. Masria. 2023. Mapping Coastal vulnerability using machine learning algorithms : a case study at North coastline of Sebou estuary, Morocco. Regional Studies in Marine Science 102829.

  • Ewane, B.E., and H.H. Lee. 2020. Assessing land use/land cover change impacts on the hydrology of Nyong River Basin. Cameroon. Journal of Mountain Science 17 (1): 50–67. https://doi.org/10.1007/s11629-019-5611-8.

    Article  Google Scholar 

  • Fitton, J.G., C.R.J. Kilburn, M.F. Thirlwall, and D.J. Hughes. 1983. 1982 eruption of Mount Cameroon, West Africa. Nature 306: 327–332. https://doi.org/10.1038/306327a0.

    Article  CAS  Google Scholar 

  • Fossi Fotsi, Y., N. Pouvreau, I. Brenon, R. Onguene, and J. Etame. 2019. Temporal (1948–2012) and dynamic evolution of the Wouri Estuary Coastline within the Gulf of Guinea. Journal of Marine Science and Engineering 7(10). https://doi.org/10.3390/jmse7100343.

  • Fuentes, J.E., R.A. Olaya, and C.E. Garcia. 2022. Evaluation of coastal erosion in the watersheds of municipality of Buenaventura, Colombia : Using geospatial techniques and the Composite Vulnerability Index. ISPRS International Journal of Geo-Information 11 (11): 568.

    Article  Google Scholar 

  • Furlan, E., P. Dalla Pozza, M. Michetti, S. Torresan, A. Critto, and A. Marcomini. 2021. Development of a multi-dimensional Coastal Vulnerability Index : Assessing vulnerability to inundation scenarios in the Italian coast. Science of the Total Environment 772: 144650.

    Article  CAS  Google Scholar 

  • Giresse, P., J.P. Megope-Foonde, G. Ngueutchoua, J.C. Aloisi, M. Kuete, and J. Monteillet. 1996. Carte sédimentologique du plateau continental du Cameroun.

  • Gornitz, V., and P. Kanciruk. 1989. Assessment of global coastal hazards from sea level rise (CONF-8907104–1). Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). https://www.osti.gov/biblio/5966579.

  • Gornitz, V., T.W. White, and R.M. Cushman. 1991. Vulnerability of the US to future sea level rise (CONF-910780–1). Oak Ridge National Lab., TN (USA). https://www.osti.gov/biblio/5875484.

  • Hauhouot, C., and C. N’doufou. 2009. Dynamique sédimentaire du littoral ivoirien entre Grand-Lahou et Abidjan. Revue de Géographie Tropicale et d’Environnement, EDUCI, n° 2.

  • Hinkel, J., D. Lincke, A.T. Vafeidis, M. Perrette, R.J. Nicholls, R.S.J. Tol, B. Marzeion, X. Fettweis, C. Ionescu, and A. Levermann. 2014. Coastal flood damage and adaptation costs under 21st century sea-level rise. Proceedings of the National Academy of Sciences 111 (9): 3292–3297. https://doi.org/10.1073/pnas.1222469111.

    Article  CAS  Google Scholar 

  • Hoeke, Ron Karl, Kathleen L. McInnes, and Julian G. O’Grady. 2015. Wind and wave setup contributions to extreme sea levels at a tropical high island: A stochastic cyclone simulation study for Apia, Samoa. Journal of Marine Science and Engineering 3 (3): 1117–1135. https://doi.org/10.3390/jmse3031117.

    Article  Google Scholar 

  • Hoque, M. A.-A., S. Phinn, C. Roelfsema, and I. Childs. 2018. Modelling tropical cyclone risks for present and future climate change scenarios using geospatial techniques. International Journal of Digital Earth 11(3): 246‑263. https://doi.org/10.1080/17538947.2017.1320595.

  • Hornik, K., M. Stinchcombe, and H. White. 1989. Multilayer feedforward networks are universal approximators. Neural Networks 2 (5): 359–366. https://doi.org/10.1016/0893-6080(89)90020-8.

    Article  Google Scholar 

  • Hosmer, D.W., T. Hosmer, S. Le Cessie, and S. Lemeshow. 1997. A comparison of goodness-of-fit tests for the logistic regression model. Statistics in Medicine 16 (9): 965–980. https://doi.org/10.1002/(SICI)1097-0258(19970515)16:9<965::AID-SIM509>3.0.CO;2-O.

    Article  CAS  Google Scholar 

  • Hosmer, D. W., S. Lemeshow, and R.X. Sturdivant. 2013. Applied logistic regression (3rd ed.). Wiley. https://doi.org/10.1002/9781118548387.

  • Hzami, A., E. Heggy, O. Amrouni, G. Mahé, M. Maanan, and S. Abdeljaouad. 2021. Alarming coastal vulnerability of the deltaic and sandy beaches of North Africa. Scientific Reports 11 (1): 1–15.

    Article  Google Scholar 

  • IPCC. 2014. Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. In:R.K. PachauriandL.A. Meyer(Eds.) Core Writing Team.Geneva, Switzerland: IPCC, p.151.

  • IPCC. 2018. Global warming of 1.5°C. an IPCC special report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. In:V. Masson-Delmotte, P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignorand T. Waterfield (Eds.) . In Press.

  • Kaczmarek, L.M., R. Ostrowski, Z. Pruszak, and G. Rozynski. 2005. Selected problems of sediment transport and morphodynamics of a multi-bar nearshore zone. Estuarine, Coastal and Shelf Science 62 (3): 415–425. https://doi.org/10.1016/j.ecss.2004.09.006.

    Article  Google Scholar 

  • Kantamaneni, K., M. Phillips, T. Thomas, and R. Jenkins. 2018. Assessing coastal vulnerability : Development of a combined physical and economic index. Ocean & Coastal Management 158: 164–175.

    Article  Google Scholar 

  • Khouakhi, A., M. Snoussi, S. Niazi, and O. Raji. 2013. Vulnerability assessment of Al Hoceima bay (Moroccan Mediterranean coast): A coastal management tool to reduce potential impacts of sea-level rise and storm surges. Journal of Coastal Research 65 (10065): 968–973. https://doi.org/10.2112/SI65-164.1.

    Article  Google Scholar 

  • Klein, R.J.T., R.J. Nicholls, and F. Thomalla. 2003. Resilience to natural hazards : How useful is this concept? Global Environmental Change Part b: Environmental Hazards 5 (1): 35–45. https://doi.org/10.1016/j.hazards.2004.02.001.

    Article  Google Scholar 

  • Koffi, K.P., C. Hauhouot, K.S. Yao, N.P. Dangui,  S. Monde,  K. et Aka. 2014. Évolution à long terme (quarante dernières années) du trait de côte du périmètre littoral est de Port-Bouët et projection d’une ligne de recul. Revue de Géographie Tropicale et d’Environnement, n° 2.

  • Kumar, T.S., R.S. Mahendra, S. Nayak, K. Radhakrishnan, and K.C. Sahu. 2010. Coastal vulnerability assessment for Orissa State, east coast of India. Journal of Coastal Research 263: 523–534. https://doi.org/10.2112/09-1186.1.

    Article  Google Scholar 

  • Larson, M., L.X. Hoan, and H. Hanson. 2010. Direct formula to compute wave height and angle at incipient breaking. Journal of Waterway, Port, Coastal, and Ocean Engineering 136 (2): 119–122. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000030.

    Article  Google Scholar 

  • Liu, Q., J.C. Trinder, and I.L. Turner. 2017. Automatic super-resolution shoreline change monitoring using Landsat archival data : A case study at Narrabeen-Collaroy Beach. Australia. Journal of Applied Remote Sensing 11 (1). https://doi.org/10.1117/1.JRS.11.016036.

    Article  Google Scholar 

  • Liu, Y., Y. Wang, and J. Zhang. 2012. New Machine learning algorithm : random forest. Information Computing and Applications, 246‑252. https://doi.org/10.1007/978-3-642-34062-8_32.

  • Lyard, F.H., D.J. Allain, M. Cancet, L. Carrère, and N. Picot. 2021. FES2014 global ocean tide atlas : Design and performance. Ocean Science 17 (3): 615–649. https://doi.org/10.5194/os-17-615-2021.

    Article  Google Scholar 

  • Lyard, F. H., L. Carrère, M. Cancet, J.-P. Boy, P. Gégout, and J.-M. Lemoine. 2016. The FES2014 tidal atlas, accuracy assessment for satellite altimetry and other geophysical applications EPSC2016–17693.

  • Mahapatra, M., R. Ramakrishnan, and A.S. Rajawat. 2015. Coastal vulnerability assessment using analytical hierarchical process for South Gujarat Coast. India. Natural Hazards 76 (1): 139–159. https://doi.org/10.1007/s11069-014-1491-y.

    Article  Google Scholar 

  • Mahe, G., Y. L’Hote, J.C. Olivry, and G. Wotling. 2001. Trends and discontinuities in regional rainfall of West and Central Africa : 1951–1989. Hydrological Sciences Journal 46 (2): 211–226. https://doi.org/10.1080/02626660109492817.

    Article  Google Scholar 

  • Mahé, G., J. Lerique, and J.-C. Olivry. 1990. Le fleuve Ogooué au Gabon. Reconstitution des débits manquants et mise en évidence de variations climatiques à l’équateur. Hydrol Cont 5 (2): 105–124.

  • Mahé, G., and J.C. Olivry. 1999. Assessment of freshwater yields to the ocean along the intertropical coast of Africa (1951–1989). C. r. Acad Sci. Paris 3 (28): 621–626.

    Google Scholar 

  • Malczewski, J. (1999). GIS and multicriteria decision analysis. John Wiley & Sons. ISBN: 978–0–471–32944–2

  • Marti, F., A. Cazenave, F. Birol, M. Passaro, F. Léger, F. Niño, R. Almar, J. Benveniste, and J.F. Legeais. 2021. Altimetry-based sea level trends along the coasts of Western Africa. Advances in Space Research 68 (2): 504–522. https://doi.org/10.1016/j.asr.2019.05.033.

    Article  Google Scholar 

  • Masselink, G., M. Hughes, and J. Knight.  (2014). Introduction to coastal processes and geomorphology (2e éd.). Routledge. https://doi.org/10.4324/9780203785461.

  • McGranahan, G., D. Balk, and B. Anderson. 2007. The rising tide : Assessing the risks of climate change and human settlements in low elevation coastal zones. Environment and Urbanization 19 (1): 17–37. https://doi.org/10.1177/0956247807076960.

    Article  Google Scholar 

  • McLaughlin, S., and J.A.G. Cooper. 2010. A multi-scale Coastal Vulnerability Index : A tool for coastal managers? Environmental Hazards 9 (3): 233–248. https://doi.org/10.3763/ehaz.2010.0052.

    Article  Google Scholar 

  • Menéndez, P., I.J. Losada, S. Torres-Ortega, S. Narayan, and M.W. Beck. 2020. The global flood protection benefits of mangroves. Scientific Reports 10 (1): 4404. https://doi.org/10.1038/s41598-020-61136-6.

    Article  CAS  Google Scholar 

  • Meur-Ferec, C., I.L. Berre , L. Cocquempot, É. Guillou, A. Henaff, T. Lami, N.L. Dantec, P. Letortu, M. Philippe, and C. Noûs. 2020. Une méthode de suivi de la vulnérabilité systémique à l’érosion et la submersion marines. Développement durable et territoires. Économie, géographie, politique, droit, sociologie 11 (n°1). https://doi.org/10.4000/developpementdurable.16731.

  • Mohamad, M. F., L.H. Lee, M. Kamarul, and H. et Samion. 2014. Coastal vulnerability assessment towards sustainable management of peninsular Malaysia coastline 5(6): 858. https://doi.org/10.7763/IJESD.2014.V5.

  • Murali, M., A. Misra, S. Amrita, and P. Vethamony. 2013. Coastal vulnerability of Puducherry coast, India using analytical hierarchical process. Natural Hazards and Earth System Sciences 1: 509–559. https://doi.org/10.5194/nhessd-1-509-2013.

    Article  Google Scholar 

  • Ndour, A., R.A. Laïbi, M. Sadio, C.G.E. Degbe, A.T. Diaw, L.M. Oyédé, E.J. Anthony, P. Dussouillez, H. Sambou, E. Dièye, and B. Hadji. 2018. Management strategies for coastal erosion problems in west Africa : Analysis, issues, and constraints drawn from the examples of Senegal and Benin. Ocean & Coastal Management 156: 92–106. https://doi.org/10.1016/j.ocecoaman.2017.09.001.

    Article  Google Scholar 

  • Nicholls, R.J., and A. Cazenave. 2010. Sea-level rise and its impact on coastal zones. Science 328 (5985): 1517–1520. https://doi.org/10.1126/science.1185782.

    Article  CAS  Google Scholar 

  • Nicholls, R.J., N. Marinova, J.A. Lowe, S. Brown, P. Vellinga, D. de Gusmão, J. Hinkel, and R.S.J. Tol. 2011. Sea-level rise and its possible impacts given a ‘beyond 4°C world’ in the twenty-first century. Philosophical Transactions of the Royal Society a: Mathematical, Physical and Engineering Sciences 369 (1934): 161–181. https://doi.org/10.1098/rsta.2010.0291.

    Article  Google Scholar 

  • Nicholls, R., P. Wong, V. Burkett, J. Codignotto, J. Hay, R. McLean, S. Ragoonaden, C. Woodroffe, P. Abuodha, J. Arblaster, B. Brown, D. Forbes, J. Hall, S. Kovats, J. Lowe, K. McInnes, S. Moser, S. Rupp-Armstrong, and Y. Saito. (2007). Coastal systems and low-lying areas. Faculty of Science - Papers (Archive). https://ro.uow.edu.au/scipapers/164.

  • Njutapvoui, N., R. Onguene, and J. P. Rudant. 2021. Evaluation du potentiel des series d’images multi-temporelles optique et radar des satellites SENTINEL 1 & 2 pour le suivi d’une zone côtière en contexte tropical : Cas de l’estuaire du Cameroun pour la période 2015–2020. Revue Française de Photogrammétrie et de Télédétection 223(1). https://doi.org/10.52638/rfpt.2021.586.

  • Noble, W. S. 2006. What is a support vector machine? Nature Biotechnology 24(12). https://doi.org/10.1038/nbt1206-1565.

  • Nourdi, N.F., O. Raphael, A.O. Grégoire, R. Jean Paul, B. Sakaros, S. Thomas, and T.E. Minette. 2021. Seasonal to decadal scale shoreline changes along the Cameroonian coastline, Bay of Bonny (1986 to 2020). Regional Studies in Marine Science 45. https://doi.org/10.1016/j.rsma.2021.101798.

    Article  Google Scholar 

  • Olivry, J.-C., J.P. Bricquet, and G. Mahé. 1993. Vers un appauvrissement durable des ressources en eau de l’Afrique humide? In: Stuart, J.G. (Ed.) Hydrology of Warm Humid Regions. Proceedings of a joint IAMAS-IAHS symposium held at Yokohama, pp. 67–78. AISH pub. 216.

  • Olivry, J. 1986. Fleuves et rivières du Cameroun. https://www.semanticscholar.org/paper/Fleuves-et-rivi%C3%A8res-du-Cameroun-Olivry/0d8e7b77786ab99501331b3424d0222240d173ff.

  • Ondoa, G.A., R. Onguéné, M.T. Eyango, T. Duhaut, C. Mama, D.B. Angnuureng, and R. Almar. 2018. Assessment of the evolution of Cameroon coastline : An overview from 1986 to 2015. Journal of Coastal Research 81 (10081): 122–129. https://doi.org/10.2112/SI81-016.1.

    Article  Google Scholar 

  • Onguéné, R. (2015). Modélisation multi-échelle de la circulation océanique en Afrique centrale, de la plaine abyssale à l’estuaire du Cameroun [Phdthesis, Université Paul Sabatier - Toulouse III]. https://theses.hal.science/tel-03657048.

  • Pendleton, E.A., E.R. Thieler, S.J. Williams, and R.S. Beavers. 2004. Coastal vulnerability assessment of Padre Island National Seashore (PAIS) to sea-level rise. In: US Geological Survey Open File Report 1090.

  • Pottier, P., and K.P. Anoh. (2008). Géographie du littoral de Côte d’Ivoire. Elements de réflexion pour une politique de gestion intégrée (p. 325). La Clonerie. https://hal.science/hal-00452522.

  • Pradhan, B. 2013. A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Computers & Geosciences 51: 350–365. https://doi.org/10.1016/j.cageo.2012.08.023.

    Article  Google Scholar 

  • Ramnalis, P., D.-V. Batzakis, and E. Karymbalis. 2023. Applying two methodologies of an integrated Coastal Vulnerability Index (ICVI) to future sea-level rise. Case study : southern coast of the Gulf of Corinth, Greece. Geoadria 28(1): 1‑24. https://doi.org/10.15291/geoadria.4046.

  • Ranasinghe, R., D.P. Callaghan, F. Li, D.J. Wainwright, and T.M. Duong. 2023. Assessing coastline recession for adaptation planning : sea level rise versus storm erosion. Scientific Reports 13(1). https://doi.org/10.1038/s41598-023-35523-8.

  • Rokach, L., and O. Maimon. 2005. Decision trees. In Data mining and knowledge discovery handbook (p. 165‑192). Springer, Boston, MA. https://doi.org/10.1007/0-387-25465-X_9.

  • Roy, P., S.C. Pal, R. Chakrabortty, I. Chowdhuri, A. Saha, and M. Shit. 2023. Effects of climate change and sea-level rise on coastal habitat : Vulnerability assessment, adaptation strategies and policy recommendations. Journal of Environmental Management 330.

    Article  Google Scholar 

  • Rynkiewicz, J. 2006. Estimation consistante de l’architecture des perceptrons multicouches. Comptes Rendus Mathematique 342 (9): 697–700. https://doi.org/10.1016/j.crma.2006.03.007.

    Article  Google Scholar 

  • Saaty, T.L., and L.G. Vargas. 1980. Hierarchical analysis of behavior in competition : Prediction in chess. Behavioral Science 25 (3): 180–191. https://doi.org/10.1002/bs.3830250303.

    Article  Google Scholar 

  • Saaty, T.L., and L.G. Vargas. 1991. Prediction, projection and forecasting: Applications of the analytic hierarchy process in economics, finance, politics, games and sports, 251. Boston: Kluwer Academic Publishers.

    Book  Google Scholar 

  • Saaty, T.L. 2001. Fundamentals of the analytic hierarchy process. In The analytic hierarchy process in natural resource and environmental decision making (p. 15‑35). Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9799-9_2.

  • Sahu, S.K., P. Kumar, and A.P. Singh. 2018. Modified K-NN algorithm for classification problems with improved accuracy. International Journal of Information Technology 10 (1): 65–70. https://doi.org/10.1007/s41870-017-0058-z.

    Article  Google Scholar 

  • Sallenger, A.H., K.S. Doran, and P.A. Howd. 2012. Hotspot of accelerated sea-level rise on the Atlantic coast of North America. Nature Climate Change 2 (12): 884–888. https://doi.org/10.1038/nclimate1597.

    Article  Google Scholar 

  • Sekovski, I., L. Del Río, and C. Armaroli. 2020. Development of a Coastal Vulnerability Index using analytical hierarchy process and application to Ravenna province (Italy). Ocean & Coastal Management 183.

    Article  Google Scholar 

  • Serafim, M.B., E. Siegle, A.C. Corsi, and J. Bonetti. 2019. Coastal vulnerability to wave impacts using a multi-criteria index : Santa Catarina (Brazil). Journal of Environmental Management 230: 21–32.

    Article  Google Scholar 

  • Shaw, J., R.B. Taylor, D.L. Forbes, M.H. Ruz,  and S. Solomon. 1998. Sensitivity of the coasts of Canada to sea-level rise (No 505; p. 505). https://doi.org/10.4095/210075.

  • Šimac, Z., N. Lončar, and S. Faivre. 2023. Overview of Coastal Vulnerability Indices with reference to physical characteristics of the Croatian coast of Istria. Hydrology 10 (1): 14.

    Article  Google Scholar 

  • Small, C., and R.J. Nicholls. 2003. A global analysis of human settlement in coastal zones. Journal of Coastal Research 19 (3): 584–599.

    Google Scholar 

  • Stammer, D., R.D. Ray, O.B. Andersen, B.K. Arbic, W. Bosch, L. Carrère, Y. Cheng, D.S. Chinn, B.D. Dushaw, G.D. Egbert, S.Y. Erofeeva, H.S. Fok, J. Green, and A. M., Griffiths, S., King, M. A., Lapin, V., Lemoine, F. G., Luthcke, S. B., Lyard, F., … Yi, Y. 2014. Accuracy assessment of global barotropic ocean tide models. Reviews of Geophysics 52 (3): 243–282. https://doi.org/10.1002/2014RG000450.

  • Sudha Rani, N.N.V., A.N.V. Satyanarayana, and P.K. Bhaskaran. 2015. Coastal vulnerability assessment studies over India : A review. Natural Hazards 77: 405–428.

    Article  Google Scholar 

  • Thieler, E.R., and E.S. Hammar-Klose. 1999. National assessment of coastal vulnerability to sea-level rise : preliminary results for the U.S. Atlantic coast. In National assessment of coastal vulnerability to sea-level rise : Preliminary results for the U.S. Atlantic coast (USGS Numbered Series 99‑593; Open-File Report, Vol. 99‑593). U.S. Geological Survey. https://doi.org/10.3133/ofr99593.

  • Titus, J.G., D.E. Hudgens, D.L. Trescott, M. Craghan, W.H. Nuckols, C.H. Hershner, J.M. Kassakian, C.J. Linn, P.G. Merritt, T.M. McCue, J.F. O’Connell, J. Tanski, and J. Wang. 2009. State and local governments plan for development of most land vulnerable to rising sea level along the US Atlantic coast*. Environmental Research Letters 4 (4). https://doi.org/10.1088/1748-9326/4/4/044008.

    Article  Google Scholar 

  • Vapnik, V. 2013. The nature of statistical learning theory. Springer Science & Business Media. https://doi.org/10.1007/978-1-4757-3264-1.

    Article  Google Scholar 

  • Vignudelli, S., P. Cipollini, L. Roblou, F. Lyard, G.P. Gasparini, G. Manzella, and M. Astraldi. 2005. Improved satellite altimetry in coastal systems : case study of the Corsica Channel (Mediterranean Sea). Geophysical Research Letters 32 (7). https://doi.org/10.1029/2005GL022602.

  • Vos, K., K.D. Splinter, M.D. Harley, J.A. Simmons, and I.L. Turner. 2019. CoastSat : A Google Earth Engine-enabled Python toolkit to extract shorelines from publicly available satellite imagery. Environmental Modelling & Software 122. https://doi.org/10.1016/j.envsoft.2019.104528.

    Article  Google Scholar 

  • Vos, K., W. Deng, M.D. Harley, I.L. Turner, and K.D.M. Splinter. 2022. Beach-face slope dataset for Australia. Earth System Science Data 14 (3): 1345–1357. https://doi.org/10.5194/essd-14-1345-2022.

    Article  Google Scholar 

  • Vos, K., M.D. Harley, I.L. Turner, and K.D. Splinter. 2023. Pacific shoreline erosion and accretion patterns controlled by El Niño/Southern Oscillation. Nature Geoscience 16 (2).  https://doi.org/10.1038/s41561-022-01117-8.

  • Vousdoukas, M.I., R. Ranasinghe, L. Mentaschi, T.A. Plomaritis, P. Athanasiou, A. Luijendijk, and L. Feyen. 2020. Sandy coastlines under threat of erosion. Nat. Clim. Change 10: 260–263. https://doi.org/10.1038/s41558-020-0697-0.

    Article  Google Scholar 

  • Wolf, J. 2009. Coastal flooding : Impacts of coupled wave–surge–tide models. Natural Hazards 49 (2): 241–260. https://doi.org/10.1007/s11069-008-9316-5.

    Article  Google Scholar 

  • Youssef, A.M., B. Pradhan, and M.N. Jebur. 2015. Landslide susceptibility mapping using ensemble bivariate and multivariate statistical models in Fayfa area. Saudi Arabia. Environmental Earth Sciences 73 (7): 3745–3761.https://doi.org/10.1007/s12665-014-3661-3.

    Article  Google Scholar 

Download references

Acknowledgements

We extend our profound gratitude to the various sources and institutions that played a significant role in the completion of this study. We wish to express our sincere thanks to IRGM for providing geomorphological data and to INC for making old maps and photographs available. We also appreciate the ECMWF ERA-Interim dataset (www.ECMWF.Int/research/Era) for the valuable information provided, earthexplorer.usgs.gov, and Google Earth Engine (GEE) for access to Landsat images. Our thanks go to the Copernicus program of the ESA (https://scihub.copernicus.eu/dhus/) for Sentinel images, CNES/LEGOS/CLS/AVISO for the production of the global tide model FES2014 and X-TRACK/ALES altimetric data. We acknowledge the EU Copernicus Marine Service (https://marine.copernicus.eu/access-data, https://doi.org/https://doi.org/10.48670/moi-00016) and NASA (EOSDIS) Socioeconomic Data And Applications Center (SEDAC) for providing socio-economic data. The commitment and contribution of these entities have significantly enriched our research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Njutapvoui F. Nourdi.

Additional information

Communicated by Richard Fulford

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nourdi, N.F., Raphael, O., Achab, M. et al. Integrated Assessment of Coastal Vulnerability in the Bonny Bay: A Combination of Traditional Methods (Simple and AHP) and Machine Learning Approach. Estuaries and Coasts (2024). https://doi.org/10.1007/s12237-024-01362-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12237-024-01362-7

Keywords

Navigation