Skip to main content
Log in

Refining the Farm Aquaculture Resource Management Model for Shellfish Nitrogen Removal at the Local Scale

  • Management Applications
  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Nutrient-related environmental degradation in coastal waters is a continuing global problem. Bivalve shellfish farms show nutrient removal capabilities similar to some traditional management strategies and in some places have been incorporated into nutrient management programs to help achieve water quality goals. Bioextractive nutrient removal varies by farmed species and is influenced by environment parameters; thus, data and information for both are needed to estimate nutrient mitigation potential of shellfish farms. The Farm Aquaculture Resource Management (FARM) model, calibrated for farmed species, uses local environmental and farming practice data to simulate interactions between the farmed population and the local environment and to optimize cultivation practices for economic gain. We calibrated the model to predict nitrogen removal by Eastern oyster (Crassostrea virginica) farms with specific field and experimental data on oysters, their local environment, and farm practices in Long Island Sound, CT, USA. Previous FARM applications were not validated for nitrogen removal with local data. In the harvest when ready (HWR) model scenario (oysters are harvested when they reach harvest size), the farm removed 159 kg N ha−1 year−1 while the non-HWR scenario (all oysters are harvested at one time) removed 274 kg N ha−1 year−1. These estimates are within the range of previously reported in-water bioextraction studies in the Northeastern USA. The robust outputs from this validated model can be reliably used in marine spatial planning efforts and by nutrient managers to predict the nitrogen removal benefits that could be achieved through new or expanded eastern oyster farms in eutrophic environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

Data collected for the model optimization in this study is available in the supplementary materials. Additional data requests can be sent to the first author of the manuscript.

References

  • Barillé, L., J. Prou, M. Héral, and D. Razet. 1997. Effects of high seston concentrations on the feeding, selection, and absorption of the oyster Crassostrea gigas (Thunberg). Journal of Experimental Marine Biology and Ecology 212: 149–172.

    Article  Google Scholar 

  • Barrett, L.T., S.J. Theuerkauf, J.M. Rose, H.K. Alleway, S.B. Bricker, M. Parker, and R.C. Jones. 2022. Sustainable growth of non-fed aquaculture can generate valuable ecosystem benefits. Ecosystem Services 53: 101396.

    Article  Google Scholar 

  • Bayne, B.L., and C.M. Worrall. 1980. Growth and production of mussels Mytilus edulis from two populations. Marine Ecology Progress Series 3: 317–328.

    Article  Google Scholar 

  • Beseres-Pollack, J., D. Yoskowitz, H.C. Kim, and P.A. Montagna. 2013. Role and value of nitrogen regulation provided by oysters (Crassostrea virginica) in the Mission-Aransas Estuary, Texas, USA. PLoS ONE 8 (6): e65314.

    Article  Google Scholar 

  • Blaxter, K. 1989. Energy metabolism in animals and man, 1st ed. Cambridge: Cambridge University Press.

    Google Scholar 

  • Boesch, D.F. 2019. Barriers and bridges in abating coastal eutrophication. Frontiers in Marine Science 6: 123.

    Article  Google Scholar 

  • Breitburg, D., L.A. Levin, A. Oschlies, M. Grégoire, F.P. Chavez, D.J. Conley, and J. Zhang. 2018. Declining oxygen in the global ocean and coastal waters. Science 359 (6371): eaam7240.

    Article  Google Scholar 

  • Bricelj, V.M., and R.E. Malouf. 1984. Influence of algal and suspended sediment concentrations on the feeding physiology of the hard clam Mercenaria. Marine Biology 84 (2): 155–165. https://doi.org/10.1007/BF00393000.

    Article  Google Scholar 

  • Bricker, S.B., K.C. Rice, and O.P. Bricker III. 2014. From headwaters to coast: Influence of human activities on water quality of the Potomac river estuary. Aquatic Geochemistry 20: 291–324.

    Article  CAS  Google Scholar 

  • Bricker, S.B., T.L. Getchis, C.B. Chadwick, and C.M., and J.M. Rose. 2016. Integration of ecosystem-based models into an existing interactive web-based tool for improved aquaculture decision making. Aquaculture 453: 135–146.

    Article  Google Scholar 

  • Bricker, S.B., J.G. Ferreira, C. Zhu, J.M. Rose, E. Galimany, G.H. Wikfors, C. Saurel, R.L. Miller, J. Wands, P. Trowbridge, R.E. Grizzle, K. Wellman, R. Rheault, J. Steinberg, A.P. Jacob, E.D. Davenport, S. Ayvazian, M. Chintala, and M.A. Tedesco. 2018. The role of shellfish aquaculture in reduction of eutrophication in an urban estuary. Environmental Science & Technology 52 (1): 173–183.

    Article  CAS  Google Scholar 

  • Bricker, S.B., R.E. Grizzle, P. Trowbridge, J.M. Rose, J.G. Ferreira, K. Wellman, C. Zhu, E. Galimany, G.H. Wikfors, C. Saurel, R.L. Miller, J. Wands, R. Rheault, J. Steinberg, A.P. Jacob, E.D. Davenport, S. Ayvazian, M. Chintala, and M.A. Tedesco. 2020. Bioextractive removal of nitrogen by oysters in Great Bay Piscataqua River Estuary, New Hampshire, USA. Estuaries and Coasts 43: 23–38.

    Article  CAS  Google Scholar 

  • Bricker, S.B., J. Ferreira, C. Zhu, J. Rose, E. Galimany, G. Wikfors, C. Saurel, R. Landeck Miller, J. Wands, P. Trowbridge, R. Grizzle, K. Wellman, R. Rheault, J. Steinberg, A. Jacob, E. Davenport, S. Ayvazian, M. Chintala, and M. Tedesco. 2015. An ecosystem services assessment using bioextraction technologies for removal of nitrogen and other substances in Long Island Sound and the Great Bay/Piscataqua Region Estuaries. In NCCOS Coastal Ocean Program Decision Analysis Series No. 194. Silver Spring: NOAA National Centers for Coastal Ocean Science and USEPA Office of Research and Development, Atlantic Ecology Division.

  • Brigolin, D., G.D. Maschio, and F. Rampazzo. 2009. An individual-based population dynamic model for estimating biomass yield and nutrient fluxes through an off-shore mussel (Mytilus galloprovincialis) farm. Estuary and Coastal Shelf Science 82: 365–376. https://doi.org/10.1016/j.ecss.2009.01.029.

    Article  CAS  Google Scholar 

  • Choi, K.S., D.H. Lewis, E.N. Powell, and S.M. Ray. 1993. Quantitative measurement of reproductive output in the American oyster, Crassostrea virginica (Gmelin), using an enzyme-linked immunosorbent assay (ELISA). Aquaculture Fisheries Management 24: 299–322. https://doi.org/10.1111/j.1365-2109.1993.tb00553.x.

    Article  CAS  Google Scholar 

  • Clements, J.C., and L.A. Comeau. 2019. Nitrogen removal potential of shellfish aquaculture harvests in eastern Canada: A comparison of culture methods. Aquaculture Reports 13: 100183.

    Article  Google Scholar 

  • Cornwell, J., J. Rose, L. Kellogg, M. Luckenbach, S. Bricker, K. Paynter, C. Moore, M. Parker, L. Sanford, B. Wolinski, A. Lacatell, L. Fegley, and K. Hudson. 2016. Panel recommendations on the oyster BMP nutrient and suspended sediment reduction effectiveness determination decision framework and nitrogen and phosphorus assimilation in oyster tissue reduction effectiveness for oyster aquaculture practices (Report to the Chesapeake Bay Program. Available online at http://www.chesapeakebay.net/documents/Oyster_BMP_1st_Report_Final_Approved_2016-12-19.pdf. Accessed 28 Nov 2023.

  • Cubillo, A. M., Ferreira, J.G. and S.B. Bricker. 2021. Modeling approach to predicting nitrogen removal by the Eastern oyster aquaculture industry: Final report. Submitted to NOAA NEFSC, Milford Laboratory by Longline Environmental, Ltd., National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Northeast Fisheries Science Center, Milford, CT.

  • Deslous-Paoli, J.M., A.M. Lannou, P. Geairon, S. Bougrier, O. Raillard, and M. Héral. 1992. Effects of the feeding behaviour of Crassostrea gigas (bivalve molluscs) on biosedimentation of natural particulate matter. Hydrobiologia 231: 85–91.

    Article  Google Scholar 

  • Duarte, C.M., D.J. Conley, J. Carstensen, and M. Sanchez-Camacho. 2009. Return to Neverland: Shifting baselines affect eutrophication restoration target. Estuaries and Coasts 32: 29–36. https://doi.org/10.1007/s12237-008-9111-2.

    Article  CAS  Google Scholar 

  • Dvarskas, A., S.B. Bricker, G.H. Wikfors, J.J. Bohorquez, M.S. Dixon, and J.M. Rose. 2020. Quantification and valuation of nitrogen removal services provided by commercial shellfish aquaculture at the subwatershed scale. Environmental Science & Technology 54 (24): 16156–16165.

    Article  CAS  Google Scholar 

  • Enríquez, S.C.M.D., C.M. Duarte, and K. Sand-Jensen. 1993. Patterns in decomposition rates among photosynthetic organisms: the importance of detritus C: N: P content. Oecologia 94: 457–471.

    Article  Google Scholar 

  • Ferreira, J.G., A.J.S. Hawkins, and S.B. Bricker. 2007. Management of productivity, environmental effects and profitability of shellfish aquaculture - the Farm Aquaculture Resource Management (FARM) model. Aquaculture 264: 160–174. https://doi.org/10.1016/j.aquaculture.2006.12.017.

    Article  Google Scholar 

  • Ferreira, J.G., A. Sequeira, A. Newton, T.D. Nickell, R. Pastres, J. Forte, A. Bodoy, and S.B. Bricker. 2009. Analysis of coastal and offshore aquaculture: Application of the FARM model to multiple systems and shellfish species. Aquaculture 292: 129–138.

    Article  Google Scholar 

  • Ferreira, J.G., N.G.H. Taylor, A.M. Cubillo, J. Lencart-Silva, R. Pastres, O. Bergh, and J. Guilder. 2021. An integrated model for aquaculture production, pathogen interaction, and environmental effects. Aquaculture 536: 736438. https://doi.org/10.1016/j.aquaculture.2021.736438.

    Article  CAS  Google Scholar 

  • Ferreira, J.G., H.C. Andersson, R.A. Corner, X. Desmit, Q. Fang, E.D. de Goede, S.B. Groom, H. Gu, B.G. Gustafsson, A.J.S. Hawkins, R. Hutson, H. Jiao, D. Lan, J. Lencart-Silva, R. Li, X. Liu, Q. Luo, J.K. Musango, A.M. Nobre, J.P. Nunes, P.L. Pascoe, J.G.C. Smits, A. Stigebrandt, T.C. Telfer,M.P. deWit, X. Yan, X.L. Zhang, Z. Zhang, M.Y. Zhu, C.B. Zhu, S.B. Bricker, Y. Xiao, S. Xu, C.E. Nauen, and M. Scalet. 2008. Sustainable options for people, catchment and aquatic resources. The SPEAR project, an international collaboration on integrated coastal zone management. Coimbra: IMAR — Institute of Marine Research / European Commission.

  • Ferreira, J.G., A.J.S. Hawkins, and S.B. Bricker. 2011. Chapter 1: The role of shellfish farms in provision of ecosystem goods and services. In Shellfish aquaculture and the environment, ed. S. Shumway, 1–31. Hoboken: Wiley – Blackwell.

  • Ferreira, J.G., C. Saurel, J.P. Nunes, L. Ramos, J.D. Lencaret, M.C. Silva, F. Vazquez, Ø. Bergh, W. Dewey, A. Pacheco, M. Pinchot, C. Ventura Soares, N. Taylor, W. Taylor, D. Verner-Jeffreys, J. Baas, J.K. Petersen, J. Wright, V. Calixto, and R. Rocha. 2012. Forward: Framework for Ria Formosa water quality, aquaculture and resource development. Portugal: CoExist Project, Interaction in coastal waters: A roadmap to sustainable integration of aquaculture and fisheries.

  • Filgueira, R., T. Guyondet, L.A. Comeau, and R. Tremblay. 2016. Bivalve aquaculture-environment interactions in the context of climate change. Global change biology 22 (12): 3901–3913.

    Article  Google Scholar 

  • Galimany, E., G.H. Wikfors, M.S. Dixon, C.R. Newell, S.L. Meseck, D. Henning, and J.M. Rose. 2017. Cultivation of the ribbed mussel (Geukensia demissa) for nutrient bioextraction in an urban estuary. Environmental Science & Technology 51 (22): 13311–13318.

    Article  CAS  Google Scholar 

  • Galimany, E., M. Ramón, and I. Ibarrola. 2011. Feeding behavior of the mussel Mytilus galloprovincialis (L.) in a Mediterranean estuary: a field study. Aquaculture 314 (1–4): 236–243.

    Article  Google Scholar 

  • Galtsoff, P. S. 1964. The American oyster, Crassostrea virginica Gmelin (Vol. 64). US Government Printing Office.

  • Gibbs, M.T. 2007. Sustainability performance indicators for suspended bivalve aquaculture activities. Ecological indicators 7 (1): 94–107.

    Article  Google Scholar 

  • Grizzle, R.E., K.M. Ward, C.R. Peter, M. Cantwell, D. Katz, and J. Sullivan. 2016. Growth, morphometrics and nutrient content of farmed eastern oysters, Crassostrea virginica (Gmelin), in New Hampshire, USA. Aquaculture Research 1: 13. https://doi.org/10.1111/are.12988.

    Article  CAS  Google Scholar 

  • Hammen, C.S., H.F. Miller Jr., and W.H. Geer. 1966. Nitrogen excretion of Crassostrea virginica. Comparative Biochemistry and Physiology 17 (4): 1199–1200.

    Article  CAS  Google Scholar 

  • Hawkins, A.J.S., P. Duarte, J.G. Fang, P.L. Pascoe, Z.H. Zhang, X.L. Zhang, and M.Y. Zhu. 2002. A functional model of responsive suspension-feeding and growth in bivalve shellfish, configured and validated for the scallop Chlamys farreri during culture in China. Journal of Experimental Marine Biology and Ecology 281: 13–40. https://doi.org/10.1016/S0022-0981(02)00408-2.

    Article  Google Scholar 

  • Hawkins, A.J.S., R.F.M. Smith, B.L. Bayne, and M. Héral. 1996. Novel observations underlying the fast growth of suspensionfeeding shellfish in turbid environments: Mytilus edulis. Marine Ecology Progress Series 131: 179–190.

    Article  Google Scholar 

  • Hoellein, T., M. Rojas, A. Pink, J. Gasior, and J. Kelly. 2014. Anthropogenic litter in urban freshwater ecosystems: Distribution and microbial interactions. PLoS ONE 9 (6): e98485.

    Article  Google Scholar 

  • Howarth, R.W., A. Sharpley, and D. Walker. 2002. Sources of nutrient pollution to coastal waters in the United States: Implications for achieving coastal water quality goals. Estuaries 25: 656–676.

    Article  CAS  Google Scholar 

  • Howarth, R.W., and R. Marino. 2006. Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: Evolving views over three decades. Limnology and Oceanography 51 (part 2): 364–376.

    Article  CAS  Google Scholar 

  • Iglesias, J.I.P., M.B. Urrutia, and I. Ubarrola. 1998. Measuring feeding and absorption in suspension-feeding bivalves: An appraisal of the biodeposition method. Journal of Experimental Marine Biology and Ecology 219: 71–86.

    Article  Google Scholar 

  • Kellogg, M.L., M.J. Brush, and J.C. Cornwell. 2018. An updated model for estimating the TMDL related benefits of oyster reef restoration. A final report to: The Nature Conservancy and Oyster Recovery Partnership.

  • Kim, J.K., G.P. Kraemer, and C. Yarish. 2014. Field scale evaluation of seaweed aquaculture as a nutrient bioextraction strategy in Long Island Sound and the Bronx River Estuary. Aquaculture 433: 148–156.

    Article  CAS  Google Scholar 

  • Kinsella, J.D. 2019. Environmental effects on cultured oyster Crassostrea virginica: Implications for filtration capacity and production (Doctoral dissertation, University of North Carolina Wilmington).

  • Kobayashi, M., E.E. Hofmann, E.N. Powell, J.M. Klonck, and K. Kusaka. 1997. A population dynamics model for the Japanese oyster, Crassostrea gigas. Aquaculture 149: 285–321.

    Article  Google Scholar 

  • Labrie, M.S., M.A. Sundermeyer, and B.L. Howes. 2023. Quantifying the effects of floating oyster aquaculture on nitrogen cycling in a temperate coastal embayment. Estuaries and Coasts 46: 494–511.

    Article  CAS  Google Scholar 

  • Lindahl, O., R. Hart, B. Henroth, S. Koliberg, L. Loo, L. Olrog, A. Rehnstam-Holm, J. Svensson, S. Svesson, and U. Syversen. 2005. Improving marine water quality by mussel farming: A profitable solution for Swedish society. Ambio 34: 131–138.

    Article  Google Scholar 

  • Loosanoff, V.L. 1942. Seasonal gonadal changes in the adult oysters, Ostrea virginica, of Long Island Sound. The Biological Bulletin 82 (2): 195–206.

    Article  Google Scholar 

  • Loosanoff, V.L. 1958. Some aspects of behavior of oysters at different temperatures. Biological Bulletin 114: 57–70.

    Article  Google Scholar 

  • Loosanoff, V.L., and H.C. Davis. 1952. Temperature requirements for maturation of gonads of northern oysters. Biological Bulletin 103: 80–96.

    Article  Google Scholar 

  • Martin, J.H. 1993. Determination of particulate organic carbon (POC) and nitrogen (PON) in seawater. In Equatorial Pacific process study sampling and analytical protocol, ed. S. Kadar, M. Leinen, and J.W. Murray, 37–48. U. S. JGOFS.

    Google Scholar 

  • Navarro, E., J.I.P. Iglesias, A. Perez Camacho, U. Labarta, and R. Beiras. 1991. The physiological energetics of mussels (Mytilus galloprovincialis Lmk) from different cultivation rafts in the Ria de Arosa (Galicia, N.W. Spain). Aquaculture 94: 197–212. https://doi.org/10.1016/0044-8486(91)90118-Q.

    Article  Google Scholar 

  • Newell, R.I. 1988. Ecological changes in Chesapeake Bay: are they the result of overharvesting the American oyster, Crassostrea virginica. Understanding the estuary: advances in Chesapeake Bay research 129: 536–546.

    Google Scholar 

  • Ni, W., M. Li, and J.M. Testa. 2020. Discerning effects of warming, sea level rise and nutrient management on long-term hypoxia trends in Chesapeake Bay. Science of the Total Environment 737: 139717.

    Article  CAS  Google Scholar 

  • Nunes, J.P., J.G. Ferreira, S.B. Bricker, B. O’Loan, T. Dabrowski, B. Dallaghan, A.J.S. Hawkins, B. O’Connor, and T. O’Carroll. 2011. Towards an ecosystem approach to aquaculture: Assessment of sustainable shellfish cultivation at different scales of space, time and complexity. Aquaculture 315: 369–383.

    Article  Google Scholar 

  • Officer, C.B., T.J. Smayda, and R. Mann. 1982. Benthic filter feeding: A natural eutrophication control. Marine Ecology Progress Series 9: 203–210.

    Article  Google Scholar 

  • Parker, M., and S. Bricker. 2020. Sustainable oyster aquaculture, water quality improvement, and ecosystem service value potential in Maryland Chesapeake Bay. Journal of Shellfish Research 39 (2): 269–281.

    Article  Google Scholar 

  • Petersen, J.K., B. Hasler, K. Timmermann, P. Nielsen, D.B. Tørring, M.M. Larsen, and M. Holmer. 2014. Mussels as a tool for mitigation of nutrients in the marine environment. Marine Pollution Bulletin 82 (1–2): 137–143.

    Article  CAS  Google Scholar 

  • Pew Charitable Trusts. (2023, February 9). Innovative use of farmed oysters boosts businesses and the environment. Press release. https://www.pewtrusts.org/en/research-and-analysis/articles/2023/02/09/innovative-use-of-farmed-oysters-boosts-businesses-and-the-environment/. Accessed 28 Nov 2023.

  • Pietros, J.M., and M.A. Rice. 2003. The impacts of aquacultured oysters, Crassostrea virginica (Gmelin, 1791) on water column nitrogen and sedimentation: results of a mesocosm study. Aquaculture 220 (1–4): 407–422.

    Article  Google Scholar 

  • Pollack, J.B., D. Yoskowitz, H.-C. Kim, and P.A. Montagna. 2013. Role and value of nitrogen regulation provided by oysters (Crassostrea virginica) in the Mission-Aransas Estuary, Texas, USA. PLoS One. https://doi.org/10.1371/journal.pone.0065314.

  • Pouvreau, S., Y. Bourles, S. Lefebvre, A. Gangnery, and M. Alunno-Bruscia. 2006. Application of a dynamic energy budget model to the Pacific oyster, Crassostrea gigas, reared under various environmental conditions. Journal of Sea Research 56: 156–167. https://doi.org/10.1016/j.seares.2006.03.007.

    Article  Google Scholar 

  • Prins, T.C., A.C. Smaal, and A.J. Pouwer. 1991. Selective ingestion of phytoplankton by the bivalves Mytilus edulis (L.) and Cerastoderma edule (L.). Hydrobiological Bulletin 25: 93–100. https://doi.org/10.1007/BF02259595.

    Article  Google Scholar 

  • Rabalais, N.N., and R.E. Turner. 2019. Gulf of Mexico hypoxia: Past, present, and future. Limnology and Oceanography Bulletin 28 (4): 117–124.

    Article  Google Scholar 

  • Racine, P., A. Marley, H.E. Froehlich, S.D. Gaines, I. Ladner, I. MacAdam-Somer, and D. Bradley. 2021. A case for seaweed aquaculture inclusion in US nutrient pollution management. Marine Policy 129: 104506.

    Article  Google Scholar 

  • Ray, N.E., and R.W. Fulweiler. 2021. Meta-analysis of oyster impacts on coastal biogeochemistry. Nature Sustainability 4 (3): 261–269.

    Article  Google Scholar 

  • Reitsma, J., D.C. Murphy, A.F. Archer, and R.H. York. 2017. Nitrogen extraction potential of wild and cultured bivalves harvested from nearshore waters of Cape Cod, USA. Marine Pollution Bulletin 116 (1–2): 175–181.

    Article  CAS  Google Scholar 

  • Riisgård, H.U. 1988. Efficiency of particle retention and filtration rate in 6 species of Northeast American bivalves. Marine Ecology Progress Series. Oldendorf 45 (3): 217–223.

    Article  Google Scholar 

  • Rose, J.M., S.B. Bricker, M.A. Tedesco, and G.H. Wikfors. 2014. A role for shellfish aquaculture in coastal nitrogen management. Environmental Science & Technology 48 (5): 2519–2525.

    Article  CAS  Google Scholar 

  • Rose, J.M., S.B. Bricker, and J.G. Ferreira. 2015. Comparative analysis of modeled nitrogen removal by shellfish farms. Marine Pollution Bulletin 91 (1): 185–190.

    Article  CAS  Google Scholar 

  • Ryther, J.H., and W.M. Dunstan. 1971. Nitrogen, phosphorus, and eutrophication in the coastal marine environment. Science 171 (3975): 1008–1013.

    Article  CAS  Google Scholar 

  • Saurel, C., J.G. Ferreira, D. Cheney, A. Suhrbier, B. Dewey, J. Davis, and J. Cordell. 2014. Ecosystem goods and services from Manila clam culture in Puget Sound: A modelling analysis. Aquaculture Environment Interactions 5: 255–270.

    Article  Google Scholar 

  • Shumway, S.E. 1996. Natural Environmental Factors. In The eastern oyster, Crassostrea virginica, ed. V.S. Kennedy, R.I.E. Newell, and A.F. Eble, 467–513. Maryland S.

  • Silva, C.J.G., S.B. Ferreira, T.A. Bricker, M.L. Martín-Díaz. DelValls, and E. Yáñez. 2011. Site selection for shellfish aquaculture by means of GIS and farm-scale models, with an emphasis on data-poor environments. Aquaculture 318: 444–457.

    Article  Google Scholar 

  • Sma, R.F., and A. Baggaley. 1976. Rate of excretion of ammonia by the hard clam Mercenaria mercenaria and the American oyster Crassostrea virginica. Marine Biology 36 (3): 251–258.

    Article  Google Scholar 

  • Taylor, D., C. Saurel, P. Nielsen, and J.K. Petersen. 2019. Production characteristics and optimization of mitigation mussel culture. Frontiers in Marine Science 6: 698.

    Article  Google Scholar 

  • Thompson, R.J., R.I.E. Newell, V.S. Kennedy, and R. Mann. 1996. Reproductive Processes and Early Development. In The eastern oyster, Crassostrea virginica, ed. V.S. Kennedy, R.I.E. Newell, and A.F. Eble, 335–370. Maryland S.

  • Town of Mashpee Sewer Commission. 2015. Comprehensive watershed nitrogen management plan, Town of Mashpee. Available online at https://www.mashpeema.gov/sites/g/files/vyhlif3426/f/news/mashpee_wastewater_plan.pdf. Accessed 28 Nov 2023.

  • Umanzor, S., and T. Stephens. 2023. Nitrogen and carbon removal capacity by farmed kelp Alaria marginata and Saccharina latissima varies by species. Aquaculture Journal 3 (1): 1–6.

    Article  Google Scholar 

  • Welschmeyer, N.A. 1994. Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnology and Oceanography 39 (8): 1985–1992.

    Article  CAS  Google Scholar 

  • Whitmore, E.H., M.J. Cutler,  and E.M. Thunberg. 2022. Social license to operate in the aquaculture industry: A community-focused framework. NOAA Technical Memorandum NMFS-NE: 287. https://doi.org/10.25923/htvb-s306

  • Whitney, M.M., and P. Vlahos. 2021. Reducing hypoxia in an urban estuary despite climate warming. Environmental Science & Technology 55 (2): 941–951.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank our industry partners on this project, Steve Schafer of Stella Mar Oysters, for providing oysters for monthly sampling and experiments, as well as farming practices. The project was also heavily supported by members of the Greenwich Shellfish Commission, specifically Roger Bowgen, Sue Baker, Joan Seguin, and Steve Kinner. Thanks to Andreas Duus, Nancy and Bob Sadock for access to Elias Point. During the pandemic, we unexpectedly had to conduct more remote work, so we thank Jacquelyn Gill from University of Maine for loaning her tissue grinder and Pete Countway, Erin Beirne, and Paty Matrai from Bigelow Laboratories for their facilities, muffling ovens, and extra filters. Many thanks to Eric Karplus of Science Wares who shared his shell-grinding protocol for our project. Barry C. Smith and Renee Mercaldo-Allen from the Milford Laboratory lent us their YSI for monthly sampling, and Lisa Milke provided the use of her laboratory space for our excretion rate experiments. Thank you to intern Adam Armbuster who helped fold filters for nitrogen analysis. Thank you to the Riverside Yacht Club who lent us a boat when the project’s boat was unexpectedly broken.

Funding

This project was funded by the NOAA Office of Aquaculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Skylar R. Bayer.

Additional information

Communicated by Eric N. Powell

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 256 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayer, S.R., Cubillo, A.M., Rose, J.M. et al. Refining the Farm Aquaculture Resource Management Model for Shellfish Nitrogen Removal at the Local Scale. Estuaries and Coasts (2024). https://doi.org/10.1007/s12237-024-01354-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12237-024-01354-7

Keywords

Navigation