Skip to main content

Advertisement

Log in

Trophic Structure of Temperate Australian Oyster Reefs Within the Estuarine Seascape: a Stable Isotope Analysis

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Remnant oyster reefs support diverse communities of invertebrates and fish, and there is growing interest in restoring this important habitat. Whether the construction of new oyster reefs will enhance or simply redistribute existing fisheries’ productivity depends on their trophic role–which, to date, is unknown for Australian estuaries. In this study, conducted in Port Stephens, Australia, stable isotope analysis was used to determine trophic linkages among remnant oyster reefs and their resident and transient species. Specifically, this study elucidated whether the potential trophic linkages could be arising through the direct consumption of reef-forming bivalves or from the uptake of oyster-generated organic matter found in the sediment and consumption of reef-dwelling organisms. A total of six primary producers and 35 consumers of distinct feeding guilds were sampled. Results indicated oyster reefs are contributing to the trophic ecology of both resident and transient species, both through direct predation on the reef bivalves but also indirectly through consumption of the reef benthic organic matter and consumption of other reef-dwelling organisms. Oysters and mussels were an important prey group (> 40% contribution) for three resident and five transient species, including polychaetes, blue swimmer crabs, toadfish, luderick, leatherjackets, oyster gobies, and stingarees. Benthic organic matter from the oyster reef was found to be a primary resource for 12 residents and four transient species, including crabs, shrimps, gastropods, and fish. Oyster reefs are key foraging grounds in the estuarine seascape, and their restoration will enhance fisheries productivity by broadening the trophic resource base and contribute to the estuarine energy transfer to higher trophic levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data is available upon request.

References

  • Abeels, H.A., A.N. Loh, and A.K. Volety. 2012. Trophic transfer and habitat use of oyster Crassostrea virginica reefs in southwest Florida, identified by stable isotope analysis. Marine Ecology Progress Series 462: 125–142.

    Article  Google Scholar 

  • Albo-Puigserver, M., J. Navarro, M. Coll, J. Aguzzi, L. Cardona, and R. Sáez-Liante. 2015. Feeding ecology and trophic position of three sympatric demersal chondrichthyans in the northwestern Mediterranean. Marine Ecology Progress Series 524: 255–268.

    Article  Google Scholar 

  • Amaral, V., H.N. Cabral, and M.J. Bishop. 2012. Effects of estuarine acidification on predator–prey interactions. Marine Ecology Progress Series 445: 117–127.

    Article  Google Scholar 

  • Anderson, M.J., and S.D. Connell. 1999. Predation by fish on intertidal oysters. Marine Ecology Progress Series 187: 203–211.

    Article  Google Scholar 

  • Atlas of Living Australia. 2019. Atlas of living Australia. http://www.ala.org.au. Accessed 2019.

  • Bateman, D.C., and M.J. Bishop. 2017. The environmental context and traits of habitat-forming bivalves influence the magnitude of their ecosystem engineering. Marine Ecology Progress Series 563: 95–110.

    Article  Google Scholar 

  • Beck, M.W., R.D. Brumbaugh, L. Airoldi, A. Carranza, L.D. Coen, C. Crawford, O. Defeo, G.J. Edgar, B. Hancock, M.C. Kay, H.S. Lenihan, M.W. Luckenbach, C.L. Toropova, G. Zhang, and X. Guo. 2011. Oyster reefs at risk and recommendations for conservation, restoration, and management. BioScience 61: 107–116.

    Article  Google Scholar 

  • Bishop, M.J., and C.H. Peterson. 2006. When r-selection may not predict introduced-species proliferation: Predation of a nonnative oyster. Ecological Applications 16: 718–730.

    Article  Google Scholar 

  • Bodin, N., F. Le Loc’h, and C. Hily. 2007. Effect of lipid removal on carbon and nitrogen stable isotope ratios in crustacean tissues. Journal of Experimental Marine Biology and Ecology 341: 168–175.

    Article  CAS  Google Scholar 

  • Boecklen, W.J., C.T. Yarnes, B.A. Cook, and A.C. James. 2011. On the use of stable isotopes in trophic ecology. Annual Review of Ecology, Evolution, and Systematics 42: 411–440.

    Article  Google Scholar 

  • Bouillon, S., R.M. Connolly, and D.P. Gillikin. 2011. Use of stable isotopes to understand food webs and ecosystem functioning in estuaries. In Treatise on Estuarine and Coastal Science, ed. E. Wolanski and D.S. McLusky, 143–173. Waltham: Academic Press.

    Chapter  Google Scholar 

  • Bray, D.J., and M.F. Gomon. 2018. Fishes of Australia. In Introduction to Australia’s Fishes, ed. D.J. Bray. Museums Victoria.

    Google Scholar 

  • Brett, M.T. 2014. Resource polygon geometry predicts Bayesian stable isotope mixing model bias. Marine Ecology Progress Series 514: 1–12.

    Article  Google Scholar 

  • Bugnot, A.B., K.A. Dafforn, R.A. Coleman, M. Ramsdale, J.T. Gibbeson, K. Erickson, A. Vila-Concejo, W.F. Figueira, and P.E. Gribben. 2022. Linking habitat interactions and biodiversity within seascapes. Ecosphere 13: e4021.

    Article  Google Scholar 

  • Bustamante, R.H., and G.M. Branch. 1996. The dependence of intertidal consumers on kelp-derived organic matter on the west coast of South Africa. Journal of Experimental Marine Biology and Ecology 196: 1–28.

    Article  Google Scholar 

  • Carroll, J.M., J.P. Marion, and C.M. Finelli. 2015. A field test of the effects of mesopredators and landscape setting on juvenile oyster, Crassostrea virginica, consumption on intertidal reefs. Marine Biology 162: 993–1003.

    Article  Google Scholar 

  • Castel, J., P.-J. Labourg, V. Escaravage, I. Auby, and M.E. Garcia. 1989. Influence of seagrass beds and oyster parks on the abundance and biomass patterns of meio- and macrobenthos in tidal flats. Estuarine, Coastal and Shelf Science 28: 71–85.

    Article  Google Scholar 

  • Cole, V.J., D. Harasti, R. Lines, and M. Stat. 2021. Estuarine fishes associated with intertidal oyster reefs characterized using environmental DNA and baited remote underwater video. Environmental DNA 4: 50–62.

    Article  Google Scholar 

  • Creese, R.G., T.M. Glasby, and C. Gallen. 2009. Mapping the habitats of NSW estuaries. NSW Department of Primary Industries.

    Google Scholar 

  • Dame, R.F. 2011. Ecology of marine bivalves: an ecosystem approach. CRC Press.

    Google Scholar 

  • Esquivel-Muelbert, J.R., B.S. Lanham, F. Martínez-Baena, K.A. Dafforn, P.E. Gribben, and M.J. Bishop. 2022. Spatial variation in the biotic and abiotic filters of oyster recruitment: Implications for restoration. Journal of Applied Ecology 00: 1–12.

    Google Scholar 

  • Fodrie, F.J., A.B. Rodriguez, C.J. Baillie, M.C. Brodeur, S.E. Coleman, R.K. Gittman, D.A. Keller, M.D. Kenworthy, A.K. Poray, J.T. Ridge, E.J. Theuerkauf, N.L. Lindquist, and S. Arnott. 2014. Classic paradigms in a novel environment: Inserting food web and productivity lessons from rocky shores and saltmarshes into biogenic reef restoration. Journal of Applied Ecology 51: 1314–1325.

    Article  Google Scholar 

  • Franca, S., R.P. Vasconcelos, S. Tanner, C. Maguas, M.J. Costa, and H.N. Cabral. 2011. Assessing food web dynamics and relative importance of organic matter sources for fish species in two Portuguese estuaries: A stable isotope approach. Marine Environmental Research 72: 204–215.

    Article  CAS  Google Scholar 

  • Froese, R., and D. Pauly. 2019. FishBase. World Wide Web electronic publication. www.fishbase.org. Accessed 2019.

  • Fry, B., and E.B. Sherr. 1984. δ13C Measurements as indicators of carbon flow in marine and freshwater ecosystems, 196–229. New York, NY: Springer New York.

    Google Scholar 

  • Gilby, B.L., A.D. Olds, R.M. Connolly, P.S. Maxwell, C.J. Henderson, and T.A. Schlacher. 2018a. Seagrass meadows shape fish assemblages across estuarine seascapes. Marine Ecology Progress Series 588: 179–189.

    Article  Google Scholar 

  • Gilby, B.L., A.D. Olds, C.H. Peterson, R.M. Connolly, C.M. Voss, M.J. Bishop, M. Elliott, J.H. Grabowski, N.L. Ortodossi, and T.A. Schlacher. 2018b. Maximizing the benefits of oyster reef restoration for finfish and their fisheries. Fish and Fisheries 19: 931–947.

    Article  Google Scholar 

  • Gillies, C.L., I.M. McLeod, H.K. Alleway, P. Cook, C. Crawford, C. Creighton, B. Diggles, J. Ford, P. Hamer, G. Heller-Wagner, E. Lebrault, A. Le Port, K. Russell, M. Sheaves, and B. Warnock. 2018. Australian shellfish ecosystems: Past distribution, current status and future direction. PLoS ONE 13: e0190914.

    Article  Google Scholar 

  • Grabowski, J.H. 2004. Habitat complexity disrupts predator-prey interactions but not the trophic cascade on oyster reefs. Ecology 85: 995–1004.

    Article  Google Scholar 

  • Grabowski, J.H., and C.H. Peterson. 2007. Restoring oyster reefs to recover ecosystem services. In Ecosystem Engineers: Plants to Protists, 281–298. Elsevier.

    Chapter  Google Scholar 

  • Grabowski, J.H., R.D. Brumbaugh, R.F. Conrad, A.G. Keeler, J.J. Opaluch, C.H. Peterson, M.F. Piehler, S.P. Powers, and A.R. Smyth. 2012. Economic valuation of ecosystem services provided by oyster reefs. BioScience 62: 900–909.

    Article  Google Scholar 

  • Hadwen, W.L., G.L. Russell, and A.H. Arthington. 2007. Gut content- and stable isotope-derived diets of four commercially and recreationally important fish species in two intermittently open estuaries. Marine and Freshwater Research 58: 363–375.

    Article  CAS  Google Scholar 

  • Hanley, T.C., A.R. Hughes, B. Williams, H. Garland, and D.L. Kimbro. 2016. Effects of intraspecific diversity on survivorship, growth, and recruitment of the eastern oyster across sites. Ecology 97: 1518–1529.

    Article  Google Scholar 

  • Herzka, S.Z. 2005. Assessing connectivity of estuarine fishes based on stable isotope ratio analysis. Estuarine, Coastal and Shelf Science 64: 58–69.

    Article  Google Scholar 

  • Hewitt, D.E., T.M. Smith, V. Raoult, M.D. Taylor, and T.F. Gaston. 2020. Stable isotopes reveal the importance of saltmarsh-derived nutrition for two exploited penaeid prawn species in a seagrass dominated system, 236. Coastal and Shelf Science: Estuarine.

    Google Scholar 

  • Humphries, A.T., M.K. La Peyre, M.E. Kimball, and L.P. Rozas. 2011. Testing the effect of habitat structure and complexity on nekton assemblages using experimental oyster reefs. Journal of Experimental Marine Biology and Ecology 409: 172–179.

    Article  Google Scholar 

  • Jackson, A.L., R. Inger, A.C. Parnell, and S. Bearhop. 2011. Comparing isotopic niche widths among and within communities: SIBER - Stable Isotope Bayesian Ellipses in R. Journal of Animal Ecology 80: 595–602.

    Article  Google Scholar 

  • Johnson, K.D., and D.L. Smee. 2014. Predators influence the tidal distribution of oysters (Crassostrea virginica). Marine Biology 161: 1557–1564.

    Article  Google Scholar 

  • Kelly, J.F. 2000. Stable isotopes of carbon and nitrogen in the study of avian and mammalian trophic ecology. Canadian Journal of Zoology 78: 1–27.

    Article  Google Scholar 

  • Kolasinski, J., K. Rogers, and P. Frouin. 2008. Effects of acidification on carbon and nitrogen stable isotopes of benthic macrofauna from a tropical coral reef. Rapid Communications in Mass Spectrometry 22: 2955–2960.

    Article  CAS  Google Scholar 

  • Layman, C.A., M.S. Araujo, R. Boucek, C.M. Hammerschlag-Peyer, E. Harrison, Z.R. Jud, P. Matich, A.E. Rosenblatt, J.J. Vaudo, L.A. Yeager, D.M. Post, and S. Bearhop. 2012. Applying stable isotopes to examine food-web structure: An overview of analytical tools. Biological Reviews of the Cambridge Philosophical Society 87: 545–562.

    Article  Google Scholar 

  • Leguerrier, D., N. Niquil, A. Petiau, and A. Bodoy. 2004. Modeling the impact of oyster culture on a mudflat food web in Marennes-Oléron Bay (France). Marine Ecology Progress Series 273: 147–162.

    Article  Google Scholar 

  • Logan, J.M., T.D. Jardine, T.J. Miller, S.E. Bunn, R.A. Cunjak, and M.E. Lutcavage. 2008. Lipid corrections in carbon and nitrogen stable isotope analyses: Comparison of chemical extraction and modelling methods. Journal of Animal Ecology 77: 838–846.

    Article  Google Scholar 

  • Loneragan, N.R., S.E. Bunn, and D.M. Kellaway. 1997. Are mangroves and seagrasses sources of organic carbon for penaeid prawns in a tropical Australian estuary? A multiple stable-isotope study. Marine Biology 130: 289–300.

    Article  Google Scholar 

  • Lotze, H.K., H.S. Lenihan, B.J. Bourque, R.H. Bradbury, R.G. Cooke, M.C. Kay, S.M. Kidwell, M.X. Kirby, C.H. Peterson, and J.B. Jackson. 2006. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312: 1806–1809.

    Article  CAS  Google Scholar 

  • Marshall, H.H., R. Inger, A.L. Jackson, R.A. McDonald, F.J. Thompson, and M.A. Cant. 2019. Stable isotopes are quantitative indicators of trophic niche. Ecology Letters 22: 1990–1992.

    Article  Google Scholar 

  • Martin, T.S.H., A.D. Olds, A.B.H. Olalde, C. Berkström, B.L. Gilby, T.A. Schlacher, I.R. Butler, N.A. Yabsley, M. Zann, and R.M. Connolly. 2018. Habitat proximity exerts opposing effects on key ecological functions. Landscape Ecology 33: 1273–1286.

    Article  Google Scholar 

  • Martínez-Baena, F., B.S. Lanham, I. McLeod, M.D. Taylor, S. McOrrie, A. Luongo, and M.J. Bishop. 2022. Remnant oyster reefs as fish habitat within the estuarine seascape. Marine Environmental Research Manuscript accepted for publication.

    Book  Google Scholar 

  • Mateo, M.A., O. Serrano, L. Serrano, and R.H. Michener. 2008. Effects of sample preparation on stable isotope ratios of carbon and nitrogen in marine invertebrates: Implications for food web studies using stable isotopes. Oecologia 157: 105–115.

    Article  Google Scholar 

  • Mazumder, D., J. Iles, J. Kelleway, T. Kobayashi, L. Knowles, N. Saintilan, and S. Hollins. 2010. Effect of acidification on elemental and isotopic compositions of sediment organic matter and macro-invertebrate muscle tissues in food web research. Rapid Communications in Mass Spectrometry 24: 2938–2942.

    Article  CAS  Google Scholar 

  • Mazumder, D., N. Saintilan, R.J. Williams, and R. Szymczak. 2011. Trophic importance of a temperate intertidal wetland to resident and itinerant taxa: evidence from multiple stable isotope analyses. Marine and Freshwater Research. 62: 11–19.

    Article  CAS  Google Scholar 

  • McLeod, I.M., L. Boström-Einarsson, C. Creighton, B. D’Anastasi, B. Diggles, P.G. Dwyer, L. Firby, A. Le Port, A. Luongo, F. Martínez-Baena, S. McOrrie, G. Heller-Wagner, and C.L. Gillies. 2020. Habitat value of Sydney rock oyster (Saccostrea glomerata) reefs on soft sediments. Marine and Freshwater Research 71: 771–781.

    Article  Google Scholar 

  • Miller, D.C., R.J. Geider, and H.L. MacIntyre. 1996. Microphytobenthos: the ecological role of the “secret garden” of unvegetated, shallow-water marine habitats. II. Role in sediment stability and shallow-water food webs. Estuaries 19: 202–212.

    Article  Google Scholar 

  • Nell, J.A. 1993. Farming the Sydney rock oyster (Saccostrea commercialis) in Australia. Reviews in Fisheries Science 1: 97–120.

    Article  Google Scholar 

  • Newell, R.I.E. 2004. Ecosystem influences of natural and cultivated populations of suspension-feeding bivalve molluscs: a review. Journal of Shellfish Research 23: 51–62.

    Google Scholar 

  • Ng, J.S.S., T.-C. Wai, and G.A. Williams. 2007. The effects of acidification on the stable isotope signatures of marine algae and molluscs. Marine Chemistry 103: 97–102.

    Article  CAS  Google Scholar 

  • Norling, P., and N. Kautsky. 2007. Structural and functional effects of Mytilus edulis on diversity of associated species and ecosystem functioning. Marine Ecology Progress Series 351: 163–175.

    Article  Google Scholar 

  • NSW DPI Fisheries. 2003. Fishery management strategy for the estuary general fishery, vol. 164. Cronulla Fisheries Centre: NSW Fisheries.

    Google Scholar 

  • NSW DPI Fisheries. 2020. Estuary general fishery. https://www.dpi.nsw.gov.au/fishing/commercial/fisheries/egf. Accessed 2020.

  • Oyster Culture Comission. 1877. Report of the oyster culture commission. In The Sydney Morning Herald. Sydney: The Sydney Morning Herald.

    Google Scholar 

  • Parnell, A.C., R. Inger, S. Bearhop, and A.L. Jackson. 2010. Source partitioning using stable isotopes: Coping with too much variation. PLoS ONE 5: e9672.

    Article  Google Scholar 

  • Parnell, A.C., D.L. Phillips, S. Bearhop, B.X. Semmens, E.J. Ward, J.W. Moore, A.L. Jackson, J. Grey, D.J. Kelly, and R. Inger. 2013. Bayesian stable isotope mixing models. Environmetrics 24: 387–399.

    Google Scholar 

  • Peterson, B.J. 1999. Stable isotopes as tracers of organic matter input and transfer in benthic food webs: A review. Acta Oecologica 20: 479–487.

    Article  Google Scholar 

  • Peterson, B.J., R.W. Howarth, and R.H. Garritt. 1985. Multiple stable isotopes used to trace the flow of organic matter in estuarine food webs. Science 227: 1361–1363.

    Article  CAS  Google Scholar 

  • Peterson, C.H., J.H. Grabowski, and S.P. Powers. 2003. Estimated enhancement of fish production resulting from restoring oyster reef habitat: Quantitative valuation. Marine Ecology Progress Series 264: 249–264.

    Article  Google Scholar 

  • Phillips, D.L., and P.M. Eldridge. 2006. Estimating the timing of diet shifts using stable isotopes. Oecologia 147: 195–203.

    Article  Google Scholar 

  • Phillips, D.L., and J.W. Gregg. 2003. Source partitioning using stable isotopes: Coping with too many sources. Oecologia 136: 261–269.

    Article  Google Scholar 

  • Phillips, D.L., and P.L. Koch. 2002. Incorporating concentration dependence in stable isotope mixing models. Oecologia 130: 114–125.

    Article  Google Scholar 

  • Phillips, D.L., R. Inger, S. Bearhop, A.L. Jackson, J.W. Moore, A.C. Parnell, B.X. Semmens, and E.J. Ward. 2014. Best practices for use of stable isotope mixing models in food-web studies. Canadian Journal of Zoology 92: 823–835.

    Article  Google Scholar 

  • Pinnegar, J.K., and N.V.C. Polunin. 2002. Differential fractionation of δ13C and δ15N among fish tissues: Implications for the study of trophic interactions. Functional Ecology 13: 225–231.

    Article  Google Scholar 

  • Powell, E.N., J.N. Kraeuter, and K.A. Ashton-Alcox. 2006. How long does oyster shell last on an oyster reef? Estuarine, Coastal and Shelf Science 69: 531–542.

    Article  Google Scholar 

  • Prins, T.C., A.C. Smaal, and R.F. Dame. 1997. A review of the feedbacks between bivalve grazing and ecosystem processes. Aquatic Ecology 31: 349–359.

    Article  Google Scholar 

  • Quan, W., A.T. Humphries, X. Shen, and Y. Chen. 2012. Oyster and associated benthic macrofaunal development on a created intertidal oyster (Crassostrea Ariakensis) reef in the Yangtze river estuary, China. Journal of Shellfish Research 31: 599–610.

    Article  Google Scholar 

  • Quan, W.-M., A.T. Humphries, L.-Y. Shi, and Y.-Q. Chen. 2011. Determination of trophic transfer at a created intertidal oyster (Crassostrea ariakensis) reef in the Yangtze river estuary using stable isotope analyses. Estuaries and Coasts 35: 109–120.

    Article  Google Scholar 

  • Quezada-Romegialli, C., A.L. Jackson, B. Hayden, K.K. Kahilainen, C. Lopes, C. Harrod, and N. Golding. 2018. tRophicPosition, an r package for the Bayesian estimation of trophic position from consumer stable isotope ratios. Methods in Ecology and Evolution 9: 1592–1599.

    Article  Google Scholar 

  • R Core Team. 2019. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

  • Raoult, V., T.F. Gaston, and M.D. Taylor. 2018. Habitat–fishery linkages in two major south-eastern Australian estuaries show that the C4 saltmarsh plant Sporobolus virginicus is a significant contributor to fisheries productivity. Hydrobiologia 811: 221–238.

    Article  Google Scholar 

  • Riera, P., and P. Richard. 1996. Isotopic determination of food sources of Crassostrea gigas along a trophic gradient in the estuarine bay of Marennes-Oléron. Estuarine, Coastal and Shelf Science 42: 347–360.

    Article  Google Scholar 

  • Schaal, G., P. Riera, and C. Leroux. 2008. Trophic coupling between two adjacent benthic food webs within a man-made intertidal area: A stable isotopes evidence. Estuarine, Coastal and Shelf Science 77: 523–534.

    Article  Google Scholar 

  • Scherer, A.E., M.M. Garcia, and D.L. Smee. 2017. Predatory blue crabs induce stronger nonconsumptive effects in eastern oysters Crassostrea virginica than scavenging blue crabs. PeerJ 5: e3042.

    Article  Google Scholar 

  • Selleslagh, J., H. Blanchet, G. Bachelet, and J. Lobry. 2015. Feeding habitats, connectivity and origin of organic matter supporting fish populations in an estuary with a reduced intertidal area assessed by stable isotope analysis. Estuaries and Coasts 38: 1431–1447.

    Article  CAS  Google Scholar 

  • Southwell, M.W., J.J. Veenstra, C.D. Adams, E.V. Scarlett, and K.B. Payne. 2017. Changes in sediment characteristics upon oyster reef restoration, NE Florida, USA. Journal of Coastal Zone Management 20: 1–7.

    Article  Google Scholar 

  • Staveley, T.A.B., D. Perry, R. Lindborg, and M. Gullström. 2017. Seascape structure and complexity influence temperate seagrass fish assemblage composition. Ecography 40: 936–946.

    Article  Google Scholar 

  • Stock, B.C., A.L. Jackson, E.J. Ward, A.C. Parnell, D.L. Phillips, and B.X. Semmens. 2018. Analyzing mixing systems using a new generation of Bayesian tracer mixing models. PeerJ 6: e5096.

  • Strain, E.M.A., R.L. Morris, R.A. Coleman, W.F. Figueira, P.D. Steinberg, E.L. Johnston, and M.J. Bishop. 2018. Increasing microhabitat complexity on seawalls can reduce fish predation on native oysters. Ecological Engineering 120: 637–644.

    Article  Google Scholar 

  • Stronge, W.B., H.F. Diaz, H. Bokuniewicz, D.L. Inman, S.A. Jenkins, J.R.C. Hsu, M.J. Kennish, E. Bird, P.A. Hesp, M. Crowell, S.P. Leatherman, B. Douglas, M.R. Rampino, M.J. Kennish, T.R. Healy, V. Gornitz, J.P. Doody, D. Kelletat, and A. Scheffers. 2005. Estuaries, anthropogenic impacts. In Encyclopedia of Coastal Science, ed. M.L. Schwartz, 434–436. Dordrecht: Springer Netherlands.

    Chapter  Google Scholar 

  • Swanson, H.K., M. Lysy, M. Power, A.D. Stasko, J.D. Johnson, and J.D. Reist. 2015. A new probabilistic method for quantifying n-dimensional ecological niches and niche overlap. Ecology 96: 318–324.

    Article  Google Scholar 

  • Sweeting, C.J., N.V. Polunin, and S. Jennings. 2006. Effects of chemical lipid extraction and arithmetic lipid correction on stable isotope ratios of fish tissues. Rapid Communications in Mass Spectrometry 20: 595–601.

    Article  CAS  Google Scholar 

  • Taylor, M.D., T.F. Gaston, and V. Raoult. 2018. The economic value of fisheries harvest supported by saltmarsh and mangrove productivity in two Australian estuaries. Ecological Indicators 84: 701–709.

    Article  Google Scholar 

  • Thomson, J.M. 1954. Handbook for oyster-farmers. CSIRO, Marine Biological Laboratory, Cronulla, NSW: CSIRO.

    Google Scholar 

  • Tolley, S.G., and A.K. Volety. 2005. The role of oysters in habitat use of oyster reefs by resident fishes and decapod crustaceans. Journal of Shellfish Research 24: 1007–1012.

    Article  Google Scholar 

  • Wilkie, E.M., and M.J. Bishop. 2012. Differences in shell strength of native and non-native oysters do not extend to size classes that are susceptible to a generalist predator. Marine and Freshwater Research 63: 1201–1205.

    Article  Google Scholar 

  • Wrast, J.L. 2008. Spatiotemporal and habitat-mediated food web dynamics in Lavaca Bay, Texas. Corpus Christi: Texas A&M University.

    Google Scholar 

  • Wright, J.M., W.A. O’Connor, L.M. Parker, and P.M. Ross. 2018. Predation by the endemic whelk Tenguella marginalba (Blainville, 1832) on the invasive Pacific oyster Crassostrea gigas (Thunberg, 1793). Molluscan Research 38: 130–136.

    Article  Google Scholar 

  • Zhu, Y., S.P. Newman, W.D.K. Reid, and N.V.C. Polunin. 2019. Fish stable isotope community structure of a Bahamian coral reef. Marine Biology 166: 160.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the NSW Department of Primary Industries for their support on equipment and logistics. Thank you to Derrick Cruz for his support and assistance and to Giulia Ferretto for assisting us as field volunteers. We acknowledge and pay our respects to the Worimi nation, Traditional Custodians of the lands on which this study has taken place and whose culture has nurtured and conserved our study estuarine habitats to date.

Funding

This project was funded by the Department of Biology from Macquarie University, the Macquarie University Research Excellence Scholarship (MQRES), and the Holsworth Wildlife Research Endowment–Equity Trustees Charitable Foundation and the Ecological Society of Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Martinez-Baena.

Ethics declarations

Ethics Approval

Sampling was carried out under permit P01/0059(A)-2.0. All sample processing occurred under Animal Ethics Permit ARA 2017/010.

Conflict of Interest

The authors declare no competing interests.

Additional information

Communicated by Jill A. Olin

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 517 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martinez-Baena, F., Raoult, V., Taylor, M.D. et al. Trophic Structure of Temperate Australian Oyster Reefs Within the Estuarine Seascape: a Stable Isotope Analysis. Estuaries and Coasts 46, 844–859 (2023). https://doi.org/10.1007/s12237-022-01157-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-022-01157-8

Keywords

Navigation