Skip to main content
Log in

Habitat–fishery linkages in two major south-eastern Australian estuaries show that the C4 saltmarsh plant Sporobolus virginicus is a significant contributor to fisheries productivity

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Estuarine fisheries productivity is dependent upon numerous factors, including the productivity of primary producers supporting the food web and the transport of organic matter derived from those primary producers. In this study, we use stable isotope ratios in a Bayesian mixing model to estimate the contribution of primary producers to fully recruited commercial species in two important estuarine commercial fisheries in south-eastern Australia; the Hunter and Clarence estuaries. The C4 saltmarsh plant Sporobolus virginicus had the greatest contribution to consumer diet among almost all sites and times (25–95%), though for prawns the presence of seagrass may be exerting some influence on this calculated contribution in the Clarence estuary. Particulate organic matter (POM; 30%) and fine benthic organic matter (FBOM; 39–41%) also contributed significantly to consumer diet. Mangroves and other C3 sources generally had the lowest contribution to consumers (1–31%). While the exact contributions of each source are uncertain within our Bayesian framework, these results highlight the relatively large role of saltmarsh habitat as a contributor to fishery productivity, especially in estuaries with no seagrasses. Given the anthropogenic threats to saltmarsh habitat, there is potential for loss of fishery productivity with further loss of saltmarsh areal extent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abrantes, K. & M. Sheaves, 2009. Food web structure in a near-pristine mangrove area of the Australian Wet Tropics. Estuarine, Coastal and Shelf Science 82(4): 597–607.

    Article  CAS  Google Scholar 

  • Abrantes, K. G., R. Johnston, R. M. Connolly & M. Sheaves, 2015. Importance of mangrove carbon for aquatic food webs in wet–dry tropical estuaries. Estuaries and Coasts 38(1): 383–399.

    Article  CAS  Google Scholar 

  • Alderson, B., D. Mazumder, N. Saintilan, K. Zimmerman & P. Mulry, 2013. Application of isotope mixing models to discriminate dietary sources over small-scale patches in saltmarsh. Marine Ecology Progress Series 487: 113–122.

    Article  Google Scholar 

  • Baker, H. K., J. A. Nelson & H. M. Leslie, 2016. Quantifying striped bass (Morone Saxatilis) dependence on saltmarsh-derived productivity using stable isotope analysis. Estuaries and Coasts 39(5): 1537–1542.

    Article  CAS  Google Scholar 

  • Becker, A. & M. D. Taylor, 2017. Nocturnal sampling reveals usage patterns of intertidal marsh and sub-tidal creeks by penaeid shrimp and other nekton in south-eastern Australia. Marine and Freshwater Research 68: 780–787.

    Article  Google Scholar 

  • Bergamino, L. & N. B. Richoux, 2015. Spatial and temporal changes in estuarine food web structure: differential contributions of marsh grass detritus. Estuaries and Coasts 38(1): 367–382.

    Article  CAS  Google Scholar 

  • Bond, A. L. & A. W. Diamond, 2011. Recent Bayesian stable-isotope mixing models are highly sensitive to variation in discrimination factors. Ecological Applications 21(4): 1017–1023.

    Article  PubMed  Google Scholar 

  • Bouillon, S., A. V. Borges, E. Castañeda-Moya, K. Diele, T. Dittmar, N. C. Duke, E. Kristensen, S. Y. Lee, C. Marchand & J. J. Middelburg, 2008. Mangrove production and carbon sinks: a revision of global budget estimates. Global Biogeochemical Cycles 22(2): 1–2.

    Article  CAS  Google Scholar 

  • Boys, C. A., F. J. Kroon, T. M. Glasby & K. Wilkinson, 2012. Improved fish and crustacean passage in tidal creeks following floodgate remediation. Journal of Applied Ecology 49(1): 223–233.

    Article  Google Scholar 

  • Caut, S., E. Angulo & F. Courchamp, 2009. Variation in discrimination factors (Δ15 N and Δ13C): the effect of diet isotopic values and applications for diet reconstruction. Journal of Applied Ecology 46(2): 443–453.

    Article  CAS  Google Scholar 

  • Choong, M., P. Lucas, J. Ong, B. Pereira, H. Tan & I. Turner, 1992. Leaf fracture toughness and sclerophylly: their correlations and ecological implications. New Phytologist 121(4): 597–610.

    Article  Google Scholar 

  • Choy, C. A., B. N. Popp, C. Hannides & J. C. Drazen, 2015. Trophic structure and food resources of epipelagic and mesopelagic fishes in the North Pacific Subtropical Gyre ecosystem inferred from nitrogen isotopic compositions. Limnology and Oceanography 60(4): 1156–1171.

    Article  Google Scholar 

  • Claudino, M. C., P. C. Abreu & A. M. Garcia, 2013. Stable isotopes reveal temporal and between-habitat changes in trophic pathways in a southwestern Atlantic estuary. Marine Ecology Progress Series 489: 29–42.

    Article  CAS  Google Scholar 

  • Connolly, R. M. & N. J. Waltham, 2015. Spatial analysis of carbon isotopes reveals seagrass contribution to fishery food web. Ecosphere 6(9): 1–12.

    Article  Google Scholar 

  • Connolly, R. M., A. Dalton & D. A. Bass, 1997. Fish use of an inundated saltmarsh flat in a temperate Australian estuary. Australian Journal of Ecology 22(2): 222–226.

    Article  Google Scholar 

  • Connolly, R. M., M. A. Guest, A. J. Melville & J. M. Oakes, 2004. Sulfur stable isotopes separate producers in marine food-web analysis. Oecologia 138(2): 161–167.

    Article  PubMed  Google Scholar 

  • Connolly, R. M., J. S. Hindell & D. Gorman, 2005. Seagrass and epiphytic algae support nutrition of a fisheries species, Sillago schomburgkii, in adjacent intertidal habitats. Marine Ecology Progress Series 286: 69–79.

    Article  Google Scholar 

  • Creighton, C., P. I. Boon, J. D. Brookes & M. Sheaves, 2015. Repairing Australia’s estuaries for improved fisheries production—what benefits, at what cost? Marine and Freshwater Research 66(6): 493–507.

    Article  Google Scholar 

  • Cushing, D. H., 1971. Upwelling and the production of fish. Advances in Marine Biology 9: 255–334.

    Article  Google Scholar 

  • Deegan, L. A., J. E. Hughes & R. A. Rountree, 2002. Salt Marsh Ecosystem Support of Marine Transient Species. In Weinstein, M. P. & D. Kreeger (eds.), Concepts and Controversies in Tidal Marsh Ecology. Kluwer Academic Publisher, Amsterdam: 333–365.

    Chapter  Google Scholar 

  • Eberhardt, A. L., D. M. Burdick, M. Dionne & R. E. Vincent, 2015. Rethinking the freshwater Eel: salt marsh trophic support of the American Eel, Anguilla rostrata. Estuaries and Coasts 38(4): 1251–1261.

    Article  CAS  Google Scholar 

  • Feng, J.-X., Q.-F. Gao, S.-L. Dong, Z.-L. Sun & K. Zhang, 2014. Trophic relationships in a polyculture pond based on carbon and nitrogen stable isotope analyses: a case study in Jinghai Bay, China. Aquaculture 428: 258–264.

    Article  CAS  Google Scholar 

  • Fockedey, N. & J. Mees, 1999. Feeding of the hyperbenthic mysid Neomysis integer in the maximum turbidity zone of the Elbe, Westerschelde and Gironde estuaries. Journal of Marine Systems 22(2): 207–228.

    Article  Google Scholar 

  • Fry, B., 2006. Stable Isotope Ecology. Springer, New York.

    Book  Google Scholar 

  • Fry, B. & K. Ewel, 2003. Using stable isotopes in mangrove fisheries research—a review and outlook. Isotopes In Environmental and Health Studies 39(3): 191–196.

    Article  CAS  PubMed  Google Scholar 

  • Galván, D., C. Sweeting & N. Polunin, 2012. Methodological uncertainty in resource mixing models for generalist fishes. Oecologia 169(4): 1083–1093.

    Article  PubMed  Google Scholar 

  • Garcia, A. M., M. C. Claudino, R. Mont’Alverne, P. E. R. Pereyra, M. Copertino & J. P. Vieira, 2017. Temporal variability in assimilation of basal food sources by an omnivorous fish at Patos Lagoon Estuary revealed by stable isotopes (2010–2014). Marine Biology Research 13(1): 98–107.

    Article  Google Scholar 

  • Gaston, T. F., T. A. Schlacher & R. M. Connolly, 2006. Flood discharges of a small river into open coastal waters: plume traits and material fate. Estuarine, Coastal and Shelf Science 69(1): 4–9.

    Article  Google Scholar 

  • Golet, W. J., A. B. Cooper, R. Campbell & M. Lutcavage, 2007. Decline in condition of northern bluefin tuna (Thunnus thynnus) in the Gulf of Maine. Fishery Bulletin 105(3): 390–395.

    Google Scholar 

  • Gray, C., M. Ives, W. Macbeth & B. Kendall, 2010. Variation in growth, mortality, length and age compositions of harvested populations of the herbivorous fish Girella tricuspidata. Journal of Fish Biology 76(4): 880–899.

    Article  Google Scholar 

  • Gray, C. & A. Miskiewicz, 2000. Larval fish assemblages in south-east Australian coastal waters: seasonal and spatial structure. Estuarine, Coastal and Shelf Science 50(4): 549–570.

    Article  Google Scholar 

  • Griffiths, S., 2001. Recruitment and growth of juvenile yellowfin bream, Acanthopagrus australis Guenther (Sparidae), in an Australian intermittently open estuary. Journal of Applied Ichthyology 17(5): 240–243.

    Article  Google Scholar 

  • Guest, M. A., R. M. Connolly, S. Y. Lee, N. R. Loneragan & M. J. Breitfuss, 2006. Mechanism for the small-scale movement of carbon among estuarine habitats: organic matter transfer not crab movement. Oecologia 148(1): 88–96.

    Article  PubMed  Google Scholar 

  • Hadwen, W. L. & A. H. Arthington, 2007. Food webs of two intermittently open estuaries receiving 15 N-enriched sewage effluent. Estuarine, Coastal and Shelf Science 71(1): 347–358.

    Article  Google Scholar 

  • Hadwen, W. L., G. L. Russell & A. H. Arthington, 2007. Gut content-and stable isotope-derived diets of four commercially and recreationally important fish species in two intermittently open estuaries. Marine and Freshwater Research 58(4): 363–375.

    Article  CAS  Google Scholar 

  • Haines, E. B., 1976. Relation between the stable carbon isotope composition of fiddler crabs, plants, and soils in a salt marsh. Limnology and Oceanography 21(6): 880–883.

    Article  Google Scholar 

  • Hindell, J. & F. Warry, 2010. Nutritional support of estuary perch (Macquaria Colonorum) in a temperate Australian inlet: evaluating the relative importance of invasive Spartina. Estuarine, Coastal and Shelf Science 90(3): 159–167.

    Article  CAS  Google Scholar 

  • Hjort, J., 1914. Fluctuations in the great fisheries of northern Europe viewed in the light of biological research. Rapports et Procés-Verbaux des Réunions, Conseil International pour l’Exploration de la Mer 20: 228.

    Google Scholar 

  • Hoen, D. K., S. L. Kim, N. E. Hussey, N. J. Wallsgrove, J. C. Drazen & B. N. Popp, 2014. Amino acid 15 N trophic enrichment factors of four large carnivorous fishes. Journal of Experimental Marine Biology and Ecology 453: 76–83.

    Article  CAS  Google Scholar 

  • Hollingsworth, A. & R. M. Connolly, 2006. Feeding by fish visiting inundated subtropical saltmarsh. Journal of Experimental Marine Biology and Ecology 336(1): 88–98.

    Article  Google Scholar 

  • Hussey, N. E., M. A. MacNeil, B. C. McMeans, J. A. Olin, S. F. Dudley, G. Cliff, S. P. Wintner, S. T. Fennessy & A. T. Fisk, 2014. Rescaling the trophic structure of marine food webs. Ecology Letters 17(2): 239–250.

    Article  PubMed  Google Scholar 

  • Hyndes, G. A., I. Nagelkerken, R. J. McLeod, R. M. Connolly, P. S. Lavery & M. A. Vanderklift, 2014. Mechanisms and ecological role of carbon transfer within coastal seascapes. Biological Reviews 89(1): 232–254.

    Article  PubMed  Google Scholar 

  • Igulu, M., I. Nagelkerken, G. Van der Velde & Y. Mgaya, 2013. Mangrove fish production is largely fuelled by external food sources: a stable isotope analysis of fishes at the individual, species, and community levels from across the globe. Ecosystems 16(7): 1336–1352.

    Article  CAS  Google Scholar 

  • Industries, N. D. O. P., 2017. Fisheries Spatial Data Portal. In. http://www.dpi.nsw.gov.au/about-us/science-and-research/r-and-d/projects/spatial-data-portal Accessed 28 June 2017.

  • Islam, M. S. & M. Haque, 2004. The mangrove-based coastal and nearshore fisheries of Bangladesh: ecology, exploitation and management. Reviews in Fish Biology and Fisheries 14(2): 153–180.

    Article  Google Scholar 

  • Josselyn, M. N. & A. C. Mathieson, 1980. Seasonal influx and decomposition of autochthonous macrophyte litter in a north temperate estuary. Hydrobiologia 71(3): 197–208.

    CAS  Google Scholar 

  • Kanaya, G., S. Takagi & E. Kikuchi, 2008. Dietary contribution of the microphytobenthos to infaunal deposit feeders in an estuarine mudflat in Japan. Marine Biology 155(5): 543–553.

    Article  CAS  Google Scholar 

  • Kimirei, I. A., I. Nagelkerken, Y. D. Mgaya & C. M. Huijbers, 2013. The mangrove nursery paradigm revisited: otolith stable isotopes support nursery-to-reef movements by Indo-Pacific fishes. PLoS ONE 8(6): e66320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komiyama, A., J. E. Ong & S. Poungparn, 2008. Allometry, biomass, and productivity of mangrove forests: a review. Aquatic Botany 89(2): 128–137.

    Article  Google Scholar 

  • Laffaille, P., J.-C. Lefeuvre, M.-T. Schricke & E. Feunteun, 2001. Feeding ecology of o-group sea bass, Dicentrarchus labrax, in salt marshes of Mont Saint Michel Bay (France). Estuaries 24(1): 116–125.

    Article  Google Scholar 

  • Layman, C. A., D. A. Arrington, C. G. Montaña & D. M. Post, 2007. Can stable isotope ratios provide for community-wide measures of trophic structure? Ecology 88(1): 42–48.

    Article  PubMed  Google Scholar 

  • Lebreton, B., P. Richard, E. P. Parlier, G. Guillou & G. F. Blanchard, 2011. Trophic ecology of mullets during their spring migration in a European saltmarsh: a stable isotope study. Estuarine, Coastal and Shelf Science 91(4): 502–510.

    Article  CAS  Google Scholar 

  • Linthurst, R. A. & R. J. Reimold, 1978. Estimated net aerial primary productivity for selected estuarine angiosperms in Maine, Delaware, and Georgia. Ecology 59(5): 945–955.

    Article  Google Scholar 

  • Loneragan, N., S. Bunn & D. Kellaway, 1997. Are mangroves and seagrasses sources of organic carbon for penaeid prawns in a tropical Australian estuary? A multiple stable-isotope study. Marine Biology 130(2): 289–300.

    Article  Google Scholar 

  • Marcum, K. & C. Murdoch, 1992. Salt tolerance of the coastal salt marsh grass, Sporobolus virginicus (L.) Kunth. New Phytologist 120(2): 281–288.

    Article  CAS  Google Scholar 

  • McCutchan, J. H., W. M. Lewis, C. Kendall & C. C. McGrath, 2003. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102(2): 378–390.

    Article  CAS  Google Scholar 

  • McMahon, K. W., B. J. Johnson & W. G. Ambrose, 2005. Diet and movement of the killifish, Fundulus heteroclitus, in a Maine salt marsh assessed using gut contents and stable isotope analyses. Estuaries and Coasts 28(6): 966–973.

    Article  Google Scholar 

  • McMahon, K. W., S. R. Thorrold, T. S. Elsdon & M. D. McCarthy, 2015. Trophic discrimination of nitrogen stable isotopes in amino acids varies with diet quality in a marine fish. Limnology and Oceanography 60(3): 1076–1087.

    Article  CAS  Google Scholar 

  • Melville, A. J. & R. M. Connolly, 2003. Spatial analysis of stable isotope data to determine primary sources of nutrition for fish. Oecologia 136(4): 499–507.

    Article  PubMed  Google Scholar 

  • Melville, A. J. & R. M. Connolly, 2005. Food webs supporting fish over subtropical mudflats are based on transported organic matter not in situ microalgae. Marine Biology 148(2): 363–371.

    Article  Google Scholar 

  • Middelburg, J. J., C. Barranguet, H. T. Boschker, P. M. Herman, T. Moens & C. H. Heip, 2000. The fate of intertidal microphytobenthos carbon: an in situ 13C-labeling study. Limnology and Oceanography 45(6): 1224–1234.

    Article  CAS  Google Scholar 

  • Miller, T. W., K. L. Bosley, J. Shibata, R. D. Brodeur, K. Omori & R. Emmett, 2013. Contribution of prey to Humboldt squid Dosidicus gigas in the northern California Current, revealed by stable isotope analyses. Marine Ecology Progress Series 477: 123–134.

    Article  CAS  Google Scholar 

  • Montgomery, S., 1990. Movements of juvenile eastern king prawns, Penaeus plebejus, and identification of stock along the east coast of Australia. Fisheries Research 9(3): 189–208.

    Article  Google Scholar 

  • Motomori, K., H. Mitsuhashi & S. Nakano, 2001. Influence of leaf litter quality on the colonization and consumption of stream invertebrate shredders. Ecological Research 16(2): 173–182.

    Article  Google Scholar 

  • Ortega-Cisneros, K., U. Scharler & A. Whitfield, 2016. Carbon and nitrogen system dynamics in three small South African estuaries, with particular emphasis on the influence of seasons, river flow and mouth state. Marine Ecology Progress Series 557: 17–30.

    Article  Google Scholar 

  • Parnell, A. C., R. Inger, S. Bearhop & A. L. Jackson, 2010. Source Partitioning using stable isotopes: coping with too much variation. PLoS ONE 5(3): e9672.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parnell, A. C., D. L. Phillips, S. Bearhop, B. X. Semmens, E. J. Ward, J. W. Moore, A. L. Jackson, J. Grey, D. J. Kelly & R. Inger, 2013. Bayesian stable isotope mixing models. Environmetrics 24(6): 387–399.

    Google Scholar 

  • Pauly, D. & V. Christensen, 1995. Primary production to sustain global fisheries. Nature 374(6519): 255–257.

    Article  CAS  Google Scholar 

  • Pease, B., J. Bell, J. Burchmore, M. Middleton & D. Pollard, 1981. The ecology of fish in botany bay-biology of commercially and recreationally valuable species. State Pollution Control Commission, Sydney.

    Google Scholar 

  • Phillips, D. L., R. Inger, S. Bearhop, A. L. Jackson, J. W. Moore, A. C. Parnell, B. X. Semmens & E. J. Ward, 2014. Best practices for use of stable isotope mixing models in food-web studies. Canadian Journal of Zoology 92(10): 823–835.

    Article  Google Scholar 

  • Quan, W., C. Fu, B. Jin, Y. Luo, B. Li, J. Chen & J. P. Wu, 2007. Tidal marshes as energy sources for commercially important nektonic organisms: stable isotope analysis. Marine Ecology Progress Series 352: 89–99.

    Article  Google Scholar 

  • Rayner, D. & W. Glamore, 2010. Tidal innundation and wetland restoration of Tomago wetland: Hydrodynamic modelling. WRL Technical Report No. 30, University of NSW.

  • Ricklefs, R. E., 2010. Evolutionary diversification, coevolution between populations and their antagonists, and the filling of niche space. Proceedings of the National Academy of Sciences 107(4): 1265–1272.

    Article  CAS  Google Scholar 

  • Roff, D. A., 1983. An allocation model of growth and reproduction in fish. Canadian Journal of Fisheries and Aquatic Sciences 40(9): 1395–1404.

    Article  Google Scholar 

  • Rogers, K., E. J. Knoll, C. Copeland & S. Walsh, 2015. Quantifying changes to historic fish habitat extent on north coast NSW floodplains,Australia. Regional Environmental Change 16(5): 1469–1479.

    Article  Google Scholar 

  • Roy, P. S., R. J. Williams, A. R. Jones, I. Yassini, P. J. Gibbs, B. Coates, R. J. West, P. R. Scanes, J. P. Hudson & S. Nichol, 2001. Structure and function of south-east Australian estuaries. Estuarine Coastal and Shelf Science 53(3): 351–384.

    Article  Google Scholar 

  • Rozas, L. P., 1995. Hydroperiod and its influence on nekton use of the salt marsh: a pulsing ecosystem. Estuaries 18(4): 579–590.

    Article  Google Scholar 

  • Saintilan, N. & D. Mazumder, 2010. Fine-scale variability in the dietary sources of grazing invertebrates in a temperate Australian saltmarsh. Marine and Freshwater Research 61(5): 615–620.

    Article  CAS  Google Scholar 

  • Saintilan, N., K. Rogers, D. Mazumder & C. Woodroffe, 2013. Allochthonous and autochthonous contributions to carbon accumulation and carbon store in southeastern Australian coastal wetlands. Estuarine, Coastal and Shelf Science 128: 84–92.

    Article  CAS  Google Scholar 

  • Sand-Jensen, K. & J. Borum, 1991. Interactions among phytoplankton, periphyton, and macrophytes in temperate freshwaters and estuaries. Aquatic Botany 41(1–3): 137–175.

    Article  Google Scholar 

  • Schelske, C. L. & E. P. Odum, 1961. Mechanisms maintaining high productivity in Georgia estuaries. Proceedings of the Gulf and Caribbean Fisheries Institute 14: 75–80.

    Google Scholar 

  • Selleslagh, J., H. Blanchet, G. Bachelet & J. Lobry, 2015. Feeding habitats, connectivity and origin of organic matter supporting fish populations in an estuary with a reduced intertidal area assessed by stable isotope analysis. Estuaries and Coasts 38(5): 1431–1447.

    Article  CAS  Google Scholar 

  • Semmens, B. X., E. J. Ward, A. C. Parnell, D. L. Phillips, S. Bearhop, R. Inger, A. Jackson & J. W. Moore, 2013. Statistical basis and outputs of stable isotope mixing models: comment on Fry (2013). Marine Ecology Progress Series 490: 285–289.

    Article  Google Scholar 

  • Sheaves, M., 2017. How many fish use mangroves? The 75% rule an ill-defined and poorly validated concept. Fish and Fisheries 18(4): 778–789.

    Article  Google Scholar 

  • Sheaves, M., J. Brookes, R. Coles, M. Freckelton, P. Groves, R. Johnston & P. Winberg, 2014. Repair and revitalisation of Australia’s tropical estuaries and coastal wetlands: opportunities and constraints for the reinstatement of lost function and productivity. Marine Policy 47: 23–38.

    Article  Google Scholar 

  • Sheaves, M., R. Johnston & R. Baker, 2016. Use of mangroves by fish: new insights from in-forest videos. Marine Ecology Progress Series 549: 167–182.

    Article  Google Scholar 

  • Silberschneider, V. & C. Gray, 2008. Synopsis of biological, fisheries and aquaculture-related information on mulloway Argyrosomus japonicus (Pisces: Sciaenidae), with particular reference to Australia. Journal of Applied Ichthyology 24(1): 7–17.

    Google Scholar 

  • Sundby, S., 2000. Recruitment of Atlantic cod stocks in relation to temperature and advectlon of copepod populations. Sarsia 85(4): 277–298.

    Article  Google Scholar 

  • Svensson, C. J., G. A. Hyndes & P. S. Lavery, 2007. Food web analysis in two permanently open temperate estuaries: consequences of saltmarsh loss? Marine Environmental Research 64(3): 286–304.

    Article  CAS  PubMed  Google Scholar 

  • Taylor, M. D., 2016. Identifying and understanding nursery habitats for exploited penaeid shrimp in NSW estuaries. In 25th Annual NSW Coastal Conference, 9–11th November, 2016, Coffs Harbour: 1–8.

  • Taylor, D. & B. Allanson, 1995. Organic carbon fluxes between a high marsh and estuary, and the inapplicability of the outwelling hypothesis. Marine ecology progress series Oldendorf 120(1): 263–270.

    Article  CAS  Google Scholar 

  • Taylor, M. D. & A. Ko, 2011. Monitoring acoustically tagged king prawns Penaeus (Melicertus) plebejus in an estuarine lagoon. Marine Biology 158(4): 835–844.

    Article  Google Scholar 

  • Taylor, M. D., J. A. Smith, C. A. Boys & H. Whitney, 2016. A rapid approach to evaluate putative nursery sites for penaeid prawns. Journal of Sea Research 114: 26–31.

    Article  Google Scholar 

  • Taylor, M. D., A. Becker, N. A. Moltschaniwskyj & T. F. Gaston, 2017a. Direct and indirect interactions between lower estuarine mangrove and saltmarsh habitats and a commercially important penaeid shrimp. Estuaries and Coasts. https://doi.org/10.1007/s12237-017-0326-y.

    PubMed  Google Scholar 

  • Taylor, M. D., B. Fry, A. Becker & N. A. Moltschaniwskyj, 2017b. The role of connectivity and physicochemical conditions in effective habitat of two exploited penaeid species. Ecological Indicators. https://doi.org/10.1016/j.ecolind.2017.04.050.

    Google Scholar 

  • Team, R. C., 2013. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.

    Google Scholar 

  • Turner, R. E., 1977. Intertidal vegetation and commercial yields of penaeid shrimp. Transactions of the American Fisheries Society 106(5): 411–416.

    Article  Google Scholar 

  • Tyler, A. V. & R. S. Dunn, 1976. Ration, growth, and measures of somatic and organ condition in relation to meal frequency in Winter Flounder, Pseudopleuronectes americanus, with hypotheses regarding population homeostasis. Journal of the Fisheries Research Board of Canada 33(1): 63–75. https://doi.org/10.1139/f76-008.

    Article  Google Scholar 

  • Webster, I. T., P. W. Ford & B. Hodgson, 2002. Microphytobenthos contribution to nutrient-phytoplankton dynamics in a shallow coastal lagoon. Estuaries 25(4): 540–551.

    Article  CAS  Google Scholar 

  • Werner, F. E., R. I. Perry, R. G. Lough & C. E. Naimie, 1996. Trophodynamic and advective influences on Georges Bank larval cod and haddock. Deep Sea Research Part II: Topical Studies in Oceanography 43(7): 1793–1822.

    Article  Google Scholar 

  • West, J. M. & J. B. Zedler, 2000. Marsh-creek connectivity: fish use of a tidal salt marsh in southern California. Estuaries and Coasts 23(5): 699–710.

    Article  Google Scholar 

  • White, D. A., T. E. Weiss, J. M. Trapani & L. B. Thien, 1978. Productivity and decomposition of the dominant salt marsh plants in Louisiana. Ecology 59(4): 751–759.

    Article  Google Scholar 

  • Whitfield, A. K., 1988. The role of tides in redistributing macrodetrital aggregates within the Swartvlei Estuary. Estuaries 11(3): 152–159.

    Article  Google Scholar 

  • Whitfield, A. K., 2017. The role of seagrass meadows, mangrove forests, salt marshes and reed beds as nursery areas and food sources for fishes in estuaries. Reviews in Fish Biology and Fisheries 27(1): 75–110.

    Article  Google Scholar 

  • Williams, R. & I. Thiebaud, 2007. An analysis of changes to aquatic habitats and adjacent land-use in the downstream portion of the Hawkesbury Nepean River over the past sixty years. NSW Department of Primary Industries-Fisheries Final Report Series (91).

  • Williams, R. J., F. A. Watford & V. Balashov, 2000. Kooragang Wetland Rehabilitation Project: History of Changes to Estuarine Wetlands of the Lower Hunter River. NSW Fisheries, Cronulla.

    Google Scholar 

  • Wilson, J. & J. Hacker, 1987. Comparative digestibility and anatomy of some sympatric C3 and C4 arid zone grasses. Australian Journal of Agricultural Research 38(2): 287–295.

    Article  Google Scholar 

  • Wilson, J. & P. Hattersley, 1989. Anatomical characters and digestibility of leaves of Panicum and other grass genera with C3 and different types of C4 photosynthetic pathway. Australian Journal of Agricultural Research 40(1): 125–136.

    Article  Google Scholar 

  • Zagursky, G. & R. J. Feller, 1985. Macrophyte detritus in the winter diet of the estuarine mysid, Neomysis americana. Estuaries and Coasts 8(4): 355–362.

    Article  Google Scholar 

Download references

Acknowledgements

We thank E. Mitchell, A. Becker, S. Walsh, H. Whitney, D. Cruz, N. Sarupak, and T. Ryan for assistance collecting samples throughout this project, and K. Russell and C. Copeland for guidance during the execution of the project. This Project was supported by the Fisheries Research and Development Corporation on behalf of the Australian Government (2013/006; project partners Origin Energy, Newcastle Ports Corporation, Hunter Water, and Hunter-Central Rivers Local Land Services). Funding bodies and project partners had no role in the design, data collection, analysis or interpretation of data. Sampling was carried out under permit P01/0059(A)-2.0 and Animal Research Authority NSW DPI 14/11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Raoult.

Additional information

Handling editor: Michael Power

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raoult, V., Gaston, T.F. & Taylor, M.D. Habitat–fishery linkages in two major south-eastern Australian estuaries show that the C4 saltmarsh plant Sporobolus virginicus is a significant contributor to fisheries productivity. Hydrobiologia 811, 221–238 (2018). https://doi.org/10.1007/s10750-017-3490-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-017-3490-y

Keywords

Navigation