Skip to main content

Advertisement

Log in

Groundwater Carbon Exports Exceed Sediment Carbon Burial in a Salt Marsh

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Salt marshes can sequester large amounts of carbon in sediments, but the relation between carbon storage and exportation remains poorly understood. Groundwater exchange can flush sediment carbon to surface waters and potentially reduce storage. In this study, we estimated groundwater fluxes and associated carbon fluxes using a radon (222Rn) mass balance and sediment carbon burial rates using lead (210Pb) in a pristine salt marsh (North Inlet, SC, USA). We used δ13C to trace carbon origins. We found that groundwater releases large amounts of carbon to the open ocean. These groundwater fluxes have the potential to export 7.2 ± 5.5 g m−2 of dissolved inorganic carbon (DIC), 0.2 ± 0.2 g m−2 of dissolved organic carbon (DOC) and 0.7 ± 0.5 g m−2 of carbon dioxide (CO2) per day. The fluxes exceed the average surface water CO2 emissions (0.6 ± 0.2 g m−2 day−1) and the average sediment carbon burial rates (0.17 ± 0.09 g m−2 day−1). The δ13C results suggest that groundwater carbon originated from salt marsh soils, while the sediment carbon source is derived from salt marsh vegetation. We propose that the impact of salt marshes in carbon cycling depends not only on their capacity to bury carbon in sediments, but also on their high potential to export carbon to the ocean via groundwater pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adyasari, Dini, Till Oehler, Norma Afiati, and Nils Moosdorf. 2018. Groundwater nutrient inputs into an urbanized tropical estuary system in Indonesia. Science of the Total Environment 627: 1066–1079. https://doi.org/10.1016/j.scitotenv.2018.01.281.

    Article  CAS  Google Scholar 

  • Alongi, Daniel M. 2014. Carbon cycling and storage in mangrove forests. Annual Review of Marine Science 6: 195–219. https://doi.org/10.1146/annurev-marine-010213-135020.

    Article  Google Scholar 

  • Anderson, Mary P., and William W. Woessner. 1992. Applied groundwater modeling: Simulation to flow and advective transport. Journal of Contaminant Hydrology 10: 339–340. https://doi.org/10.1016/0169-7722(92)90015-7.

    Article  Google Scholar 

  • Appleby, P.G., and F. Oldfield. 1992. Applications of lead-210 to sedimentation studies. United Kingdom: Clarendon Press.

    Google Scholar 

  • Borges, Alberto V., Bruno Delille, and M. Frankignoulle. 2005. Budgeting sinks and sources of CO2 in the coastal ocean: Diversity of ecosystem counts. Geophysical Research Letters 32: 1–4. https://doi.org/10.1029/2005GL023053.

    Article  CAS  Google Scholar 

  • Bratton, John F. 2010. The three scales of submarine groundwater flow and discharge across passive continental margins. The Journal of Geology 118: 565–575. https://doi.org/10.1086/655114.

    Article  CAS  Google Scholar 

  • Burnett, William C., and Natasha Dimova. 2012. A radon-based mass balance model for assessing groundwater inflows to lakes. In The dilema of boundaries, 55–66. Springer. https://doi.org/10.1007/978-4-431-54035-9.

  • Buzzelli, Christopher, Olcay Akman, Tracy Buck, Eric Koepfler, James Morris, and Alan Lewitus. 2004. Relationships among water-quality parameters from the North Inlet-Winyah Bay National Estuarine Research Reserve, South Carolina. Journal of Coastal Research 20: 59–74. https://doi.org/10.2112/si45-059.1.

    Article  Google Scholar 

  • Cai, Wei-Jun., Yongchen Wang, James Krest, and W.S. Moore. 2003. The geochemistry of dissolved inorganic carbon in a surficial groundwater aquifer in North Inlet South Carolina and the carbon fluxes to the coastal ocean. Geochimica Et Cosmochimica Acta 67: 631–637. https://doi.org/10.1016/S0016-7037(02)01167-5.

    Article  CAS  Google Scholar 

  • Call, Mitchell, Christian J. Sanders, Paul A. Macklin, Isaac R. Santos, and Damien T. Maher. 2019. Carbon outwelling and emissions from two contrasting mangrove creeks during the monsoon storm season in Palau Micronesia. Estuarine Coastal and Shelf Science 218: 340–348. https://doi.org/10.1016/j.ecss.2019.01.002.

    Article  CAS  Google Scholar 

  • Cantarero, DanicaLinda M., M. Ariel Blanco, Bayani Cardenas, Kazuo Nadaoka, and Fernando P. Siringan. 2019. Offshore submarine groundwater discharge at a coral reef front controlled by faults. Geochemistry Geophysics Geosystems 20: 3170–3185. https://doi.org/10.1029/2019GC008310.

    Article  Google Scholar 

  • Carter, Erin S., Scott M. White, and Alicia M. Wilson. 2008. Variation in groundwater salinity in a tidal salt marsh basin North Inlet Estuary South Carolina. Estuarine Coastal and Shelf Science 76: 543–552. https://doi.org/10.1016/j.ecss.2007.07.049.

    Article  Google Scholar 

  • Charette, Matthew A., and Ken O. Buesseler. 2004. Submarine groundwater discharge of nutrients and copper to an urban subestuary of Chesapeake Bay (Elizabeth River). Limnology and Oceanography 49: 376–385. https://doi.org/10.4319/lo.2004.49.2.0376.

    Article  CAS  Google Scholar 

  • Charette, Matthew A., Matt C. Allen, and Field Sites. 2006. Precision ground water sampling in coastal aquifers using a direct-push shielded-screen well-point system. Ground Water Monitoring & Remediation 26: 87–93.

    Article  CAS  Google Scholar 

  • Chen, Xiaogang, Fenfen Zhang, Yanling Lao, Xilong Wang, Du. Jinzhou, and Isaac R. Santos. 2018. Submarine groundwater discharge-derived carbon fluxes in mangroves: An important component of blue carbon budgets? Journal of Geophysical Research: Oceans 123: 6962–6979. https://doi.org/10.1029/2018JC014448.

    Article  CAS  Google Scholar 

  • Chmura, Gail L., Shimon C. Anisfeld, Donald R. Cahoon, and James C. Lynch. 2003. Global carbon sequestration in tidal saline wetland soils. Global Biogeochemical Cycles 17: 1111. https://doi.org/10.1029/2002GB001917.

    Article  CAS  Google Scholar 

  • Cho, Hyung-Mi., Guebuem Kim, Eun Young Kwon, Nils Moosdorf, Jordi Garcia-Orellana, and Isaac R. Santos. 2018. Radium tracing nutrient inputs through submarine groundwater discharge in the global ocean. Scientific Reports 8: 2439. https://doi.org/10.1038/s41598-018-20806-2.

    Article  CAS  Google Scholar 

  • Chu, Sophie N., Zhaohui Aleck, Meagan Eagle, Kevin D. Kroeger, and Neil K. Ganju. 2018. Deciphering the dynamics of inorganic carbon export from intertidal salt marshes using high-frequency measurements. Marine Chemistry 206: 7–18. https://doi.org/10.1016/j.marchem.2018.08.005.

    Article  CAS  Google Scholar 

  • Conrad, Stephen R., Isaac R. Santos, Shane White, and Christian J. Sanders. 2019. Nutrient and trace metal fluxes into estuarine sediments linked to historical and expanding agricultural activity (Hearnes Lake Australia). Estuaries and Coasts 42: 944–957.

    Article  CAS  Google Scholar 

  • Correa, Rogger E., Douglas R. Tait, Christian Sanders, Stephen R. Conrad, Daniel Harrison, James P. Tucker, Michael Reading, and Isaac R. Santos. 2020. Submarine groundwater discharge and associated nutrient and carbon inputs into Sydney Harbour (Australia). Journal of Hydrology 580: 124262. https://doi.org/10.1016/j.jhydrol.2019.124262.

    Article  CAS  Google Scholar 

  • Cyronak, T., I.R. Santos, D.V. Erler, and B.D. Eyre. 2013. Groundwater and porewater as major sources of alkalinity to a fringing coral reef lagoon (Muri Lagoon Cook Islands). Biogeosciences 10: 2467–2480. https://doi.org/10.5194/bg-10-2467-2013.

    Article  CAS  Google Scholar 

  • Dargusch, Paul, and Sebastian Thomas. 2012. A critical role for carbon offsets. Nature Climate Change 2: 470. https://doi.org/10.1038/nclimate1578.

    Article  Google Scholar 

  • Davis, Kay, Isaac R. Santos, Anita K. Perkins, Jackie R. Webb, and Justin Gleeson. 2020. Altered groundwater discharge and associated carbon fluxes in a wetland-drained coastal canal. Estuarine Coastal and Shelf Science 235: 106567. https://doi.org/10.1016/j.ecss.2019.106567.

    Article  CAS  Google Scholar 

  • Drake, Katherine, Holly Halifax, Susan C. Adamowicz, Christopher Craft, and Katherine Drake. 2015. Carbon sequestration in tidal salt marshes of the northeast United States. Environmental Management 56: 998–1008. https://doi.org/10.1007/s00267-015-0568-z.

    Article  Google Scholar 

  • Dulaiova, H., and W.C. Burnett. 2006. Radon loss across the water-air interface (Gulf of Thailand) estimated experimentally from 222Rn-224Ra. Geophysical Research Letters 33: 1–4. https://doi.org/10.1029/2005GL025023.

    Article  CAS  Google Scholar 

  • Gardner, L.R., and B. Kjerfve. 2006. Tidal fluxes of nutrients and suspended sediments at the North Inlet-Winyah Bay National Estuarine Research Reserve. Estuarine Coastal and Shelf Science 70: 682–692. https://doi.org/10.1016/j.ecss.2006.06.034.

    Article  Google Scholar 

  • Gardner, Leonard Robert, and Dwayne E. Porter. 2001. Stratigraphy and geologic history of a southeastern salt marsh basin North Inlet South Carolina USA. Wetlands Ecology and Management 9: 371–385.

    Article  Google Scholar 

  • Goñi, Miguel A., and L. Robert Gardner. 2004. Seasonal dynamics in dissolved organic carbon concentrations in a coastal water-table aquifer at the forest-marsh interface. Aquatic Geochemistry 9: 209–232.

    Article  Google Scholar 

  • Goñi, Miguel, and Thomas Kimberly. 2000. Sources and transformations of organic matter in surface soils and sediments from a tidal estuary. Estuaries 23: 548–564.

    Article  Google Scholar 

  • Guimond, Julia A., Angelia L. Seyfferth, Kevan B. Moffett, and Holly A. Michael. 2020. A physical-biogeochemical mechanism for negative feedback between marsh crabs and carbon storage. Environmental Research Letters 15: 034024.

  • Guimond, Julia, and Joseph Tamborski. 2021. Salt marsh hydrogeology: A review. Water (switzerland) 13: 543. https://doi.org/10.3390/w13040543.

    Article  CAS  Google Scholar 

  • Harvard, U.O. 2007. A summary of error propagation. Harvard University.

  • Harvey, Judson W., and William E. Odum. 1990. The influence of tidal marshes on upland groundwater discharge to estuaries. Biogeochemistry 10: 217–236.

    Article  Google Scholar 

  • Hwang, Dong Woon, In Seok Lee, Minkyu Choi, and Tae Hoon Kim. 2016. Estimating the input of submarine groundwater discharge (SGD) and SGD-derived nutrients in Geoje Bay Korea using222Rn-Si mass balance model. Marine Pollution Bulletin 110: 119–126. https://doi.org/10.1016/j.marpolbul.2016.06.073.

    Article  CAS  Google Scholar 

  • Kennish, Michael J. 2019. The National Estuarine Research Reserve System: A review of research and monitoring initiatives. Open Journal of Ecology 9: 50–65. https://doi.org/10.4236/oje.2019.93006.

    Article  Google Scholar 

  • Kim, Guebuem. 2002. Tidal pumping of groundwater into the coastal ocean revealed from submarine 222 Rn and CH 4 monitoring. Geophysical Research Letters 29: 21–24.

    Google Scholar 

  • Kirwan, Matthew L., and Simon M. Mudd. 2012. Response of salt-marsh carbon accumulation to climate change. Nature 488: 550–553. https://doi.org/10.1038/nature11440.

    Article  CAS  Google Scholar 

  • Kjerfve, Björn. 1986. Circulation and salt flux in a well mixed estuary. Physics of Shalow Estuaries and Bays 280: 22–29. https://doi.org/10.1029/LN016p0022.

    Article  Google Scholar 

  • Knee, K.L., and A. Paytan. 2011. Submarine groundwater discharge: A source of butrients, metals and pollutants to the coastal ocean. Treatise on Estuarine and Coastal Science 4: 205–233. https://doi.org/10.1016/B978-0-12-374711-2.00410-1.

    Article  Google Scholar 

  • Krest, J.M., W.S. Moore, and L.R. Gardner. 2000. Marsh nutrient export supplied by groundwater discharge: Evidence from radium measurements. Global Biogeochemical Cycles 14: 167–176.

    Article  CAS  Google Scholar 

  • Lee, Yong-woo, Dong-woon Hwang, Guebuem Kim, Won-chan Lee, Oh. Hyun-taik, and Masan Bay. 2008. Nutrient inputs from submarine groundwater discharge (SGD) in Masan Bay an embayment surrounded by heavily industrialized cities Korea. Science of the Total Environment 407: 3181–3188. https://doi.org/10.1016/j.scitotenv.2008.04.013.

    Article  CAS  Google Scholar 

  • Maher, Damien T., Kirsten Cowley, Isaac R. Santos, Paul Macklin, and Bradley D. Eyre. 2015. Methane and carbon dioxide dynamics in a subtropical estuary over a diel cycle: Insights from automated in situ radioactive and stable isotope measurements. Marine Chemistry 168: 69–79. https://doi.org/10.1016/j.marchem.2014.10.017.

    Article  CAS  Google Scholar 

  • McCoy, C.A., D.R. Corbett, and Onslow Bay. 2007. Hydrogeological characterization of southeast coastal plain aquifers and groundwater discharge to Onslow Bay North Carolina (USA). Journal of Hydrology 339: 159–171. https://doi.org/10.1016/j.jhydrol.2007.03.008.

    Article  CAS  Google Scholar 

  • McCraith, Barbara J., Leonard R. Gardner, David S. Wethey, and Willard S. Moore. 2003. The effect of fiddler crab burrowing on sediment mixing and radionuclide pro les along a topographic gradient in a southeastern salt marsh. Journal of Marsh Research 613: 359–390. https://doi.org/10.1357/002224003322201232.

    Article  Google Scholar 

  • Mcleod, Elizabeth, Gail L. Chmura, Steven Bouillon, Rodney Salm, Mats Björk, Carlos M. Duarte, Catherine E. Lovelock, William H. Schlesinger, and Brian R. Silliman. 2011. A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment 9: 552–560. https://doi.org/10.1890/110004.

    Article  Google Scholar 

  • Mctigue, Nathan, Jenny Davis, Antonio B. Rodriguez, Anna Atencio, and Carolyn Currin. 2019. Sea level rise explains changing carbon accumulation rates in a salt marsh over the past two millennia. Journal of Geophysical Research: Biogeosciences 124: 2945–2957. https://doi.org/10.1029/2019JG005207.

    Article  CAS  Google Scholar 

  • Mitra, Abhijit, and Sufia Zaman. 2015. Blue Carbon Reservoir of the Blue Planet. New Delhi: Springer. https://doi.org/10.1007/978-81-322-2107-4.

    Book  Google Scholar 

  • Moore, Willard S. 1996. Large groundwater inputs to coastal waters revelaed by 226Ra enrichments. Nature 380: 612–614.

    Article  CAS  Google Scholar 

  • Moore, Willard S., and D.F. Reid. 1973. Extraction of radium from natural waters using manganese-impregnated acrylic fibers. Journal of Geophysical Research 78: 8880–8886. https://doi.org/10.1029/JC078i036p08880.

    Article  CAS  Google Scholar 

  • Moore, Willard S., and Ralph Arnold. 1996. Measurment of 223 Ra and 224 Ra in coastal waters using a delayed coincidence counter. Journal of Geophysical Research: Oceans 101: 1321–1329.

    Article  CAS  Google Scholar 

  • Morris, J.T., K. Sundberg, and C.S. Hopkinson. 2013. Salt marsh primary production and its responses to relative sea level and nutrients in estuaries at Plum Island Massachusetts and North Inlet South Carolina USA. Oceanography 26: 78–84. https://doi.org/10.5670/oceanog.2013.48.

    Article  Google Scholar 

  • Morris, James T., and Gary J. Whiting. 1986. Emission of gaseous carbon dioxide from salt-marsh sediments and its relation to other carbon losses. Estuaries 9: 9–19. https://doi.org/10.2307/1352188.

    Article  CAS  Google Scholar 

  • Ortega, L., M. Manzano, E. Custodio, and J. Hornero. 2014. Using 222Rn to identify and quantify groundwater inflows to the Mundo River (SE Spain). Chemical Geology 395: 67–79. https://doi.org/10.1016/j.chemgeo.2014.12.002.

    Article  CAS  Google Scholar 

  • Peterson, Richard N., William C. Burnett, Makoto Taniguchi, Jianyao Chen, Isaac R. Santos, and Tomotoshi Ishitobi. 2008. Radon and radium isotope assessment of submarine groundwater discharge in the Yellow River delta China. Journal of Geophysical Research: Oceans 113: 1–14. https://doi.org/10.1029/2008JC004776.

    Article  CAS  Google Scholar 

  • Peterson, Richard N., Christof Meile, Leigha E. Peterson, Matthew Carter, and David Miklesh. 2019. Groundwater discharge dynamics into a salt marsh tidal river. Estuarine, Coastal and Shelf Science 218: 324–333. https://doi.org/10.1016/j.ecss.2019.01.007.

    Article  Google Scholar 

  • Pierrot, Denis, Craig Neill, Kevin Sullivan, Robert Castle, Rik Wanninkhof, Heike Lüger, Truls Johannessen, Are Olsen, Richard A. Feely, and Catherine E. Cosca. 2009. Recommendations for autonomous underway pCO2 measuring systems and data-reduction routines. Deep-Sea Research Part II: Topical Studies in Oceanography 56: 512–522. https://doi.org/10.1016/j.dsr2.2008.12.005.

    Article  Google Scholar 

  • Qu, Wenjing, Hailong Li, Hao Huang, Chunmiao Zheng, Chaoyue Wang, Xuejing Wang, and Yan Zhang. 2017. Seawater-groundwater exchange and nutrients carried by submarine groundwater discharge in different types of wetlands at Jiaozhou Bay China. Journal of Hydrology 555: 185–197. https://doi.org/10.1016/j.jhydrol.2017.10.014.

    Article  CAS  Google Scholar 

  • Raymond, Peter A., and Jonathan J. Cole. 2001. Gas exchange in rivers and estuaries: Choosing a gas transfer velocity. Estuaries 24: 312. https://doi.org/10.2307/1352954.

    Article  CAS  Google Scholar 

  • Robinson, Clare E., Pei Xin, Isaac R. Santos, Matthew A. Charette, Ling Li, and D.A. Barry. 2018. Groundwater dynamics in subterranean estuaries of coastal unconfined aquifers: Controls on submarine groundwater discharge and chemical inputs to the ocean. Advances in Water Resources 115: 315–331. https://doi.org/10.1016/j.advwatres.2017.10.041.

    Article  CAS  Google Scholar 

  • Rodellas, Valentí, Jordi Garcia-Orellana, Pere Masqué, Mor Feldman, and Yishai Weinstein. 2015. Submarine groundwater discharge as a major source of nutrients to the Mediterranean Sea. Proceedings of the National Academy of Sciences 112: 3926–3930. https://doi.org/10.1073/pnas.1419049112.

    Article  CAS  Google Scholar 

  • Sadat-noori, Mahmood, Damien T. Maher, and Isaac R. Santos. 2016. Groundwater discharge as a source of dissolved carbon and greenhouse gases in a subtropical estuary. Estuaries and Coasts 39: 639–656. https://doi.org/10.1007/s12237-015-0042-4.

    Article  CAS  Google Scholar 

  • Sadat-Noori, Mahmood, Isaac R. Santos, Christian J. Sanders, Luciana M. Sanders, and Damien T. Maher. 2015. Groundwater discharge into an estuary using spatially distributed radon time series and radium isotopes. Journal of Hydrology 528: 703–719. https://doi.org/10.1016/j.jhydrol.2015.06.056.

    Article  CAS  Google Scholar 

  • Sadat-Noori, Mahmood, Douglas Tait, Damien Troy Maher, Ceylena Holloway, and Isaac R. Santos. 2017. Greenhouse gases and submarine groundwater discharge in a Sydney Harbour embayment (Australia). Estuarine Coastal and Shelf Science 207: 499–509. https://doi.org/10.1016/j.ecss.2017.05.020.

    Article  Google Scholar 

  • Sadat-Noori, Mahmood, Douglas R. Tait, Damien T. Maher, Ceylena Holloway, and Isaac R. Santos. 2018. Greenhouse gases and submarine groundwater discharge in a Sydney Harbour embayment (Australia). Estuarine, Coastal and Shelf Science 207: 499–509. https://doi.org/10.1016/j.ecss.2017.05.020.

    Article  Google Scholar 

  • Sanders, Christian J., Isaac R. Santos, Damien T. Maher, Joshua L. Breithaupt, Joseph M. Smoak, Michael Ketterer, Mitchell Call, Luciana Sanders, and Bradley D. Eyre. 2016. Examining 239+240Pu 210Pb and historical events to determine carbon nitrogen and phosphorus burial in mangrove sediments of Moreton. Journal of Environmental Radioactivity 151: 623–629. https://doi.org/10.1016/j.jenvrad.2015.04.018.

    Article  CAS  Google Scholar 

  • Sanders, C.J., D.T. Maher, J.M. Smoak, and E.B.D. Yre. 2019. Large variability in organic carbon and CaCO3 burial in seagrass meadows: A case study from three Australian estuaries. Marine Ecology Progress Series 616: 211–218. https://doi.org/10.3354/meps12955.

    Article  CAS  Google Scholar 

  • Santos, Isaac R., Karin R. Bryan, Conrad A. Pilditch, and Douglas R. Tait. 2014. Influence of porewater exchange on nutrient dynamics in two New Zealand estuarine intertidal flats. Marine Chemistry 167: 57–70. https://doi.org/10.1016/j.marchem.2014.04.006.

    Article  CAS  Google Scholar 

  • Santos, Isaac R., William C. Burnett, Jeffrey Chanton, Natasha Dimova, and Richard N. Peterson. 2009a. Land or ocean?: Assessing the driving forces of submarine groundwater discharge at a coastal site in the Gulf of Mexico. Journal of Geophysical Research: Oceans 114: 1–11. https://doi.org/10.1029/2008JC005038.

    Article  CAS  Google Scholar 

  • Santos, Isaac R., Bradley D. Eyre, and Markus Huettel. 2012a. The driving forces of porewater and groundwater flow in permeable coastal sediments: A review. Estuarine Coastal and Shelf Science 98: 1–15. https://doi.org/10.1016/j.ecss.2011.10.024.

    Article  Google Scholar 

  • Santos, Isaac R., Melanie Beck, Hans-Jürgen. Brumsack, Damien T. Maher, Thorsten Dittmar, Hannelore Waska, and Bernhard Schnetger. 2015. Porewater exchange as a driver of carbon dynamics across a terrestrial-marine transect: Insights from coupled 222 Rn and pCO2 observations in the German Wadden Sea. Marine Chemistry 171: 10–20. https://doi.org/10.1016/j.marchem.2015.02.005.

    Article  CAS  Google Scholar 

  • Santos, Isaac R., David J. Burdige, Tim C. Jennerjahn, Steven Bouillon, Alex Cabral, Oscar Serrano, Thomas Wernberg, Karen Filbee-dexter, Julia A. Guimond, and Joseph J. Tamborski. 2021. The renaissance of Odum’s outwelling hypothesis in “Blue Carbon” science. Estuarine Coastal and Shelf Science 255: 107361. https://doi.org/10.1016/j.ecss.2021.107361.

    Article  Google Scholar 

  • Santos, Isaac R., Natasha Dimova, Richard N. Peterson, Benjamin Mwashote, Jeffrey Chanton, and William C. Burnett. 2009b. Extended time series measurements of submarine groundwater discharge tracers (222Rn and CH4) at a coastal site in Florida. Marine Chemistry 113: 137–147. https://doi.org/10.1016/j.marchem.2009.01.009.

    Article  CAS  Google Scholar 

  • Santos, Isaac R., Damien T. Maher, and Bradley D. Eyre. 2012b. Coupling automated radon and carbon dioxide measurements in coastal waters. Environmental Science & Technology 46: 7685–7691.

    Article  CAS  Google Scholar 

  • Santos, Isaac R., Damien T. Maher, Reece Larkin, Jackie R. Webb, and Christian J. Sanders. 2019. Carbon outwelling and outgassing vs. burial in an estuarine tidal creek surrounded by mangrove and saltmarsh wetlands. Limnology and Oceanography 64: 996–1013. https://doi.org/10.1002/lno.11090.

    Article  CAS  Google Scholar 

  • Schmidt, A., J.J. Gibson, I.R. Santos, M. Schubert, K. Tattrie, and H. Weiss. 2010. The contribution of groundwater discharge to the overall water budget of two typical Boreal lakes in Alberta/Canada estimated from a radon mass balance. Hydrology and Earth System Sciences 14: 79–89. https://doi.org/10.5194/hess-14-79-2010.

    Article  CAS  Google Scholar 

  • Sippo, James Z., Christian J. Sanders, Isaac R. Santos, Luke C. Jeffrey, Mitchell Call, Yota Harada, Kylie Maguire, Dylan Brown, Stephen R. Conrad, and Damien T. Maher. 2020. Coastal carbon cycle changes following mangrove loss. Limnology and Oceanography 65: 2642–2656. https://doi.org/10.1002/lno.11476.

    Article  CAS  Google Scholar 

  • Tait, Douglas R., Dirk V. Erler, Isaac R. Santos, Tyler J. Cyronak, Uwe Morgenstern, and Bradley D. Eyre. 2014. The influence of groundwater inputs and age on nutrient dynamics in a coral reef lagoon. Marine Chemistry 166: 36–47. https://doi.org/10.1016/j.marchem.2014.08.004.

    Article  CAS  Google Scholar 

  • Tait, Douglas R., Damien T. Maher, Paul A. Macklin, and Isaac R. Santos. 2016. Mangrove pore water exchange across a latitudinal gradient. Geophysical Research Letters 43: 3334–3341. https://doi.org/10.1002/2016GL068289.

    Article  Google Scholar 

  • Taniguchi, Makoto, Henrietta Dulai, Kimberly M. Burnett, Isaac R. Santos, Thomas Stieglitz, Guebuem Kim, Nils Moosdorf, and William Burnett. 2019. Submarine groundwater discharge: Updates on its measuremets techniques geophysical drivers magnitudes and effects. Frontiers in Environmental Science 7: 141. https://doi.org/10.3389/fenvs.2019.00141.

    Article  Google Scholar 

  • Tobias, Craig R., Stephen A. Macko, Iris C. Anderson, Elizabeth A. Canuel, Judson W. Harvey, U.S. Geological Survey, Tom Juster, et al. 2001. Tracking the fate of a high concentration groundwater nitrate plume through a fringing marsh: A combined groundwater tracer and in situ isotope enrichment study. Limnology and Oceanography 46: 1977–1989.

    Article  CAS  Google Scholar 

  • Wadnerkar, Praktan D., Bayartungalag Batsaikhan, Stephen R. Conrad, Kay Davis, Rogger E. Correa, Ceylena Holloway, Shane A. White, Christian J. Sanders, and Isaac R. Santos. 2020. Contrasting radium-derived groundwater exchange and nutrient lateral fluxes in a natural mangrove versus an artificial canal. Estuaries and Coasts 44: 123–136.

    Article  Google Scholar 

  • Wang, Faming, Lu. Xiaoliang, Christian J. Sanders, and Jianwu Tang. 2019. Tidal wetland resilience to sea level rise increases their carbon sequestration capacity in United States. Nature Communications 10: 1–11. https://doi.org/10.1038/s41467-019-13294-z.

    Article  CAS  Google Scholar 

  • Wang, Faming, Christian J. Sanders, Isaac R. Santos, Jianwu Tang, Mark Schuerch, Matthew L. Kirwan, Robert E. Kopp, et al. 2021. Global blue carbon accumulation in tidal wetlands increases with climate change. National Science Review. https://doi.org/10.1093/nsr/nwaa296.

    Article  Google Scholar 

  • Wang, Xuejing, Hailong Li, Jinzhong Yang, Chunmiao Zheng, Yan Zhang, An. An, and Meng Zhang. 2017. Nutrient inputs through submarine groundwater discharge in an embayment: A radon investigation in Daya Bay China. Journal of Hydrology 551: 784–792. https://doi.org/10.1016/j.jhydrol.2017.02.036.

    Article  CAS  Google Scholar 

  • Wang, Zhaohui A., Kevin D. Kroeger, Neil K. Ganju, Meagan Eagle Gonneea, and Sophie N. Chu. 2016. Intertidal salt marshes as an important source of inorganic carbon to the coastal ocean. Limnology and Oceanography 2: 1916–1931. https://doi.org/10.1002/lno.10347.

    Article  Google Scholar 

  • Wanninkhof, Rik. 1992. Relationship between wind speed and gas exchange over the ocean. Journal of Geophysical Research 97: 7373–7382. https://doi.org/10.1029/92JC00188.

    Article  Google Scholar 

  • Wanninkhof, Rik, and Wade R. McGillis. 1999. A cubic relationship between air-sea CO2 exchange and wind speed. Geophysical Research Letters 26: 1889–1892. https://doi.org/10.1029/1999GL900363.

    Article  CAS  Google Scholar 

  • Webb, Jackie R., Isaac R. Santos, Damien T. Maher, Douglas R. Tait, Tyler Cyronak, Mahmood Sadat-Noori, Paul Macklin, and Luke C. Jeffrey. 2019. Groundwater as a source of dissolved organic matter to coastal waters: Insights from radon and CDOM observations in 12 shallow coastal systems. Limnology and Oceanography 64: 182–196. https://doi.org/10.1002/lno.11028.

    Article  CAS  Google Scholar 

  • Wigand, Cathleen, Earl Davey, Roxanne Johnson, Karen Sundberg, James Morris, Paul Kenny, Erik Smith, and Matt Holt. 2015. Nutrient effects on belowground organic matter in a minerogenic salt marsh North Inlet SC. Estuaries and Coasts 38: 1838–1853. https://doi.org/10.1007/s12237-014-9937-8.

    Article  CAS  Google Scholar 

  • Wilson, Alicia M. 2005. Fresh and saline groundwater discharge to the ocean: A regional perspective. Water Resources Research 41: 1–11. https://doi.org/10.1029/2004WR003399.

    Article  Google Scholar 

  • Wilson, Alicia M., Tayler B. Evans, Willard S. Moore, Charles A. Schutte, and Samantha B. Joye. 2015. What time scales are important for monitoring tidally influenced submarine groundwater discharge? Insights from a salt marsh. Water Resources Research 51: 4198–4207. https://doi.org/10.1002/2014WR015984.Received.

    Article  Google Scholar 

  • Wilson, Alicia M., and James T. Morris. 2012. The influence of tidal forcing on groundwater flow and nutrient exchange in a salt marsh-dominated estuary. Biogeochemistry 108: 27–38. https://doi.org/10.1007/s10533-010-9570-y.

    Article  Google Scholar 

  • Wolaver, Thomas G., Steve Hutchinson, and Marvin Marozas. 1986. Dissolved and particulate organic carbon in the North Inlet Estuary South Carolina: What controls their concentrations? Estuaries 9: 31–38.

    Article  CAS  Google Scholar 

  • Xiao, Kai, Alicia M. Wilson, Hailong Li, and Carolyn Ryan. 2019. Crab burrows as preferential flow conduits for groundwater flow and transport in salt marshes: A modeling study. Advances in Water Resources 132: 103408. https://doi.org/10.1016/j.advwatres.2019.103408.

    Article  Google Scholar 

  • Xiao, Kai, Alicia M. Wilson, Hailong Li, Isaac R. Santos, Joseph Tamborski, Erik Smith, Susan Q. Lang, et al. 2021. Large CO2 release and tidal flushing in salt marsh crab burrows reduce the potential for blue carbon sequestration. Limnology and Oceanography 66: 14–29. https://doi.org/10.1002/lno.11582.

    Article  CAS  Google Scholar 

  • Zhang, Yan, Hailong Li, Xuejing Wang, Chunmiao Zheng, Chaoyue Wang, Kai Xiao, Li. Wan, Xusheng Wang, Xiaowei Jiang, and Huaming Guo. 2016. Estimation of submarine groundwater discharge and associated nutrient fluxes in eastern Laizhou Bay China using 222 Rn. Journal of Hydrology 533: 103–113. https://doi.org/10.1016/j.jhydrol.2015.11.027.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Additional support was provided by The University of South Carolina and the Belle W. Baruch Marine Research Institute Visiting Scientist Award. Special thanks to professor Erik Smith, Susan Lang, Matt Kimball, Jan Blakely, Bryan Benitez-Nelson, and Susan Denham at the Belle Baruch Field Laboratory for their field work assistances and laboratory measurement. Thanks to professor Richard Peterson for letting us use one of his RAD7s. Thanks to professor Bjorn Kjferve for his support calculating water volumes. Finally, thanks to Shane White, Anna Giles, Dr. Lea Mamo, Dr. James Tucker, Dr. Euan Provost, Dr. Sophie Prior, Dr. Alejandro Tagliafico, Georgia Foley, Lara Townsend, Damien Eggeling, Alison King, Dr. Matt Nimbs, and professor Steve Smith for their general support. We also thank the two anonymous reviewers for helping improve the overall quality of the paper.

Funding

The Australian Research Council (FT170100327), Swedish Research Council (2020-00457) and National Natural Science Foundation of China (41907162) provided funding for this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rogger E. Correa.

Additional information

Communicated by Neil Kamal Ganju

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 105 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Correa, R.E., Xiao, K., Conrad, S.R. et al. Groundwater Carbon Exports Exceed Sediment Carbon Burial in a Salt Marsh. Estuaries and Coasts 45, 1545–1561 (2022). https://doi.org/10.1007/s12237-021-01021-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-021-01021-1

Keywords

Navigation