Skip to main content

Advertisement

Log in

Blue Crab (Callinectes sapidus) Population Structure in Southern New England Tidal Rivers: Patterns of Shallow-Water, Unvegetated Habitat Use and Quality

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

The blue crab, Callinectes sapidus, has a broad geographic distribution encompassing coastal waters of the eastern USA and Gulf of Mexico, but intraspecific patterns of habitat use and quality are lacking at northern latitudes. This study examined the population structure of blue crabs in the Seekonk and Taunton Rivers (Rhode Island and Massachusetts, USA): two tidally influenced rivers contiguous with the Narragansett Bay Estuary and dominated by shallow-water, unvegetated habitats. Crabs were collected fortnightly from May through August (2012–2016), and abundance- and growth-based metrics were used to assess riverine habitat use and quality. These metrics were also analyzed with respect to crab life history traits and in situ abiotic conditions to elucidate patterns of habitat selection throughout ontogeny. Crabs measuring 8 to 185 mm carapace width (CW; n = 2577) were collected, and two distinct age classes occupied the rivers during the spring and summer (maximum abundance ~ 5 crabs/10 m2). The younger age-0+ cohort was numerically dominant (~ 88% of total catch) and comprised of male and juvenile female crabs (mean ± SD abundance = 0.28 ± 0.26 males/10 m2 and 0.14 ± 0.12 juvenile females/10 m2). Males accounted for the majority of age-1+ crabs (~ 83% of cohort), yet sexually mature females were also observed (9% of cohort; mean ± SD abundance = 0.04 ± 0.06 adult females/100 m2; size at 50% maturity ± 95 CI = 129.0 ± 0.2 mm CW). Crabs were spatially segregated along a salinity gradient with males and juvenile females prevalent in oligohaline waters (upper river salinity ~ 5 ppt) and adult females mainly concentrating in higher salinity areas (mid- and lower-river salinity ~ 11–21 ppt). Seasonal and interannual patterns in crab abundance also differed by sex and ontogeny. Peak catches of males and juvenile females occurred during the spring and mid-summer, and annual abundances were positively related to dissolved oxygen (DO) concentrations. In contrast, mature females were most abundant during August and years with elevated water temperatures. The absolute and relative growth rates of juvenile crabs equaled 0.9 ± 0.3 mm CW/day and 1.5 ± 0.6% CW/day, respectively, and were directly related to DO levels. A synoptic examination of crab abundance and growth across a broad geographic range indicated that shallow-water, unvegetated habitats presently serve as functional nurseries in southern New England tidal rivers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Able, K.W., M.P. Fahay, K.L. Heck Jr., C.T. Roman, M.A. Lazzari, and S.C. Kaiser. 2002. Seasonal distribution and abundance of fishes and decapod crustaceans in a Cape Cod estuary. Northeastern Naturalist 9 (3): 285–302.

    Article  Google Scholar 

  • Adkins, G. 1972. Study of the blue crab fishery in Louisiana. Louisiana Wildlife and Fisheries Commission, Technical Bulletin 3, Baton Rouge.

  • Aguilar, R., A.H. Hines, T.G. Wolcott, D.L. Wolcott, M.A. Kramer, and R.N. Lipcius. 2005. The timing and route of movement and migration of post-copulatory female blue crabs, Callinectes sapidus Rathbun, from the upper Chesapeake Bay. Journal of Experimental Marine Biology and Ecology 319 (1-2): 117–128.

    Article  Google Scholar 

  • Amsler, M.O., and R.Y. George. 1984. The effect of temperature on the oxygen consumption and developmental rate of the embryos of Callinectes sapidus Rathbun. Journal of Experimental Marine Biology and Ecology 82 (2-3): 221–229.

    Article  Google Scholar 

  • Anderson, J.T. 1988. A review of size-dependent survival during pre-recruit stages of fishes in relation to recruitment. Journal of Northwest Atlantic Fishery Science 8: 55–66.

    Article  Google Scholar 

  • Bauer, L.T., and T.J. Miller. 2010. Temperature-, salinity-, and size-dependent winter mortality of juvenile blue crabs (Callinectes sapdius). Estuaries and Coasts 33 (3): 668–677.

    Article  CAS  Google Scholar 

  • Beck, M.W., K.L. Heck Jr., K.W. Able, D. Childers, D. Eggleston, B.M. Gillanders, B. Halpern, C. Hays, K. Hoshino, T. Minello, R. Orth, P. Sheridan, and M. Weinstein. 2001. The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates. Bioscience 51 (8): 633–641.

    Article  Google Scholar 

  • Belkin, I.M. 2009. Rapid warming of large marine ecosystems. Progress in Oceanography 81 (1-4): 207–213.

    Article  Google Scholar 

  • Bell, G.W., D.B. Eggleston, and T.G. Wolcott. 2003a. Behavioral responses of free-ranging blue crabs to episodic hypoxia. I. Movement. Marine Ecology Progress Series 259: 215–225.

    Article  Google Scholar 

  • Bell, G.W., D.B. Eggleston, and T.G. Wolcott. 2003b. Behavioral responses of free-ranging blue crabs to episodic hypoxia. II. Feeding. Marine Ecology Progress Series 259: 227–235.

    Article  Google Scholar 

  • Bellchambers, L.M., and S. De Lestang. 2005. Selectivity of different gear types for sampling the blue swimmer crab, Portunus pelagicus L. Fisheries Research 73 (1-2): 21–27.

    Article  Google Scholar 

  • Bhattacharya, C.G. 1967. A simple method of resolution of a distribution into Gaussian components. Biometrics 23 (1): 115–135.

    Article  CAS  Google Scholar 

  • Bishop, T.D., H.L. Miller III, R.L. Walker, D.H. Hurley, T. Menken, and C.E. Tilburg. 2010. Blue crab (Callinectes sapidus Rathbun, 1896) settlement at three Georgia (USA) estuarine sites. Estuaries and Coasts 33 (3): 688–698.

    Article  CAS  Google Scholar 

  • Boone, E.C., S.J. Meiners, L.D. Frankland, J.R. Laursen, and R.E. Colombo. 2019. A comparison between fixed and random sampling of a low density spotted bass population in a large river. Journal of Freshwater Ecology. 34 (1): 533–540.

    Article  Google Scholar 

  • Boutin, B., and T.E. Targett. 2013. Fish and blue crab assemblages in the shore zone of tidal creeks in the Delaware coastal bays. Northeastern Naturalist 20 (1): 69–90.

    Article  Google Scholar 

  • Brill, R.W., P.G. Bushnell, T.A. Elton, and H.J. Small. 2015. The ability of blue crab (Callinectes sapidus, Rathbun 1886) to sustain aerobic metabolism during hypoxia. Journal of Experimental Marine Biology and Ecology 471: 126–136.

    Article  Google Scholar 

  • Bromilow, A.M., and R.N. Lipcius. 2017. Mechanisms governing ontogenetic habitat shifts: role of trade-offs, predation, and cannibalism for the blue crab. Marine Ecology Progress Series 584: 145–159.

    Article  Google Scholar 

  • Brylawski, B.J., and T.J. Miller. 2006. Temperature-dependent growth of the blue crab (Callinectes sapidus): A molt process approach. Canadian Journal of Fisheries and Aquatic Sciences 63 (6): 1298–1308.

    Article  Google Scholar 

  • Burke, J.S. 1995. Role of feeding and prey distribution of summer and southern flounder in selection of estuarine nursery habitats. Journal of Fish Biology 47 (3): 355–366.

    Article  Google Scholar 

  • Cadman, L.R., and M.P. Weinstein. 1985. Size-weight relationships of postecdysial juvenile blue crabs (Callinectes sapidus Rathbun) from the lower Chesapeake Bay. Journal of Crustacean Biology 5 (2): 306–310.

    Article  Google Scholar 

  • Cadman, L.R., and M.P. Weinstein. 1988. Effects of temperature and salinity on the growth of laboratory-reared juvenile blue crabs Callinectes sapidus Rathbun. Journal of Experimental Marine Biology and Ecology 121 (3): 193–207.

    Article  Google Scholar 

  • Calabretta, C.J., and C.A. Oviatt. 2008. The response of benthic macrofauna to anthropogenic stress in Narragansett Bay, Rhode Island: a review of human stressors and assessment of community conditions. Marine Pollution Bulletin 56 (10): 1680–1695.

    Article  CAS  Google Scholar 

  • Chang, Y.J., C.L. Sun, Y. Chen, and S.Z. Yeh. 2012. Modelling the growth of crustacean species. Reviews in Fish Biology and Fisheries 22 (1): 157–187.

    Article  Google Scholar 

  • Clark, M.E., T.G. Wolcott, D.L. Wolcott, and A.H. Hines. 1999. Intraspecific interference among foraging blue crabs Callinectes sapidus: interactive effects of predator density and prey patch distribution. Marine Ecology Progress Series 178: 69–78.

    Article  Google Scholar 

  • Collie, J.S., A.D. Wood, and H.P. Jeffries. 2008. Long term shifts in the species composition of a coastal fish community. Canadian Journal of Fisheries and Aquatic Sciences 65 (7): 1352–1365.

    Article  Google Scholar 

  • Costlow, J.D. 1967. The effect of salinity and temperature on survival and metamorphosis of megalops of the blue crab Callinectes sapidus. Helgoländer Wissenschaftliche Meeresuntersuchungen 15 (1-4): 84–97.

    Article  Google Scholar 

  • Costlow, J.D., and C.G. Brookhout. 1959. The larval development of Callinectes sapidus Rathbun reared in the laboratory. Biological Bulletin 116 (3): 373–396.

    Article  Google Scholar 

  • Cunningham, S.R., and M.Z. Darnell. 2015. Temperature-dependent growth and molting in early juvenile blue crabs Callinectes sapidus. Journal of Shellfish Research 34 (2): 505–510.

    Article  Google Scholar 

  • Currin, B.M., J.P. Reed, and J.M. Miller. 1984. Growth, production, food consumption and mortality of juvenile spot and croaker: a comparison of tidal and non-tidal nursery areas. Estuaries 7 (4): 451–459.

    Article  Google Scholar 

  • Darnell, R.M. 1959. Studies of the life history of the blue crab Callinectes sapidus Rathbun in Louisiana waters. Transactions of the American Fisheries Society 88 (4): 294–304.

    Article  Google Scholar 

  • Das, T.A., and W.B. Stickle. 1993. Sensitivity of crabs Callinectes sapidus and C. similis and the gastropod Stramonita haemastoma to hypoxia and anoxia. Marine Ecology Progress Series 98: 263–274.

    Article  Google Scholar 

  • Dauer, D.M. 1993. Biological criteria, environmental health and estuarine microbenthic community structure. Marine Pollution Bulletin 26 (5): 249–257.

    Article  Google Scholar 

  • Davis, J.L.D., A.C. Young-Williams, A.H. Hines, and Y. Zohar. 2005. Assessing the potential for stock enhancement in the case of the Chesapeake Bay blue crab (Callinectes sapidus). Canadian Journal of Fisheries and Aquatic Sciences 62 (1): 109–122.

    Article  Google Scholar 

  • Deacutis, C.F., D. Murray, W. Prell, E. Saarman, and L. Korhun. 2006. Hypoxia in the upper half of Narragansett Bay, RI during August 2001 and 2002. Northeastern Naturalist 13 (sp4): 173–198.

    Article  Google Scholar 

  • deRivera, C.E., G.M. Ruiz, A.H. Hines, and P. Jivoff. 2005. Biotic resistance to invasion: native predator limits abundance and distribution of an introduced crab. Ecology 86 (12): 3364–3376.

    Article  Google Scholar 

  • Desbonnet, A., and B. Costa-Pierce (eds.). 2008. Science for ecosystem-based management: Narragansett Bay in the 21st century, 570. New York: Springer Verlag.

  • Diaz, R.J., J. Nestlerode, and M.L. Diaz. 2004. A global perspective on the effects of eutrophication and hypoxia on aquatic biota. In Proceedings of the 7th International Symposium on Fish Physiology, Toxicology and Water Quality, eds. G.L. Rupp, and M.D. White, 1–33. U.S. Environmental Protection Agency, Ecosystems Research Division, EPA 600/R-04/049, Athens, GA.

  • Dittel, A.I., A.H. Hines, G.M. Ruiz, and K.K. Ruffin. 1995. Effects of shallow water refuge on behavior and density-dependent mortality of juvenile blue crabs in Chesapeake Bay. Bulletin of Marine Science 57: 902–916.

    Google Scholar 

  • Eby, L.A., and L.B. Crowder. 2002. Hypoxia-based habitat compression in the Neuse River estuary: context-dependent shifts in behavioral avoidance thresholds. Canadian Journal of Fisheries and Aquatic Sciences 59 (6): 952–965.

    Article  Google Scholar 

  • Eggleston, D.B., E. Millstein, and G. Plaia. 2015. Timing and route of migration of mature female blue crabs in a tidal estuary. Biology Letters 11 (5): 20140936.

    Article  Google Scholar 

  • Epifanio, C.E. 1995. Transport of blue crab (Callinectes sapidus) larvae in the waters off mid-Atlantic states. Bulletin of Marine Science 57: 713–725.

    Google Scholar 

  • Epifanio, C.E. 2007. Larval biology. In The blue crab Callinectes sapidus, ed. V.S. Kennedy and L.E. Cronin, 513–533. College Park, MD: Maryland Sea Grant College Program.

    Google Scholar 

  • Epifanio, C.E., C.C. Valenti, and A.E. Pembroke. 1984. Dispersal and recruitment of blue crab larvae in Delaware Bay, U.S.A. Estuarine, Coastal and Shelf Science 18 (1): 1–12.

    Article  Google Scholar 

  • Fitz, H.C., and R.G. Wiegert. 1991. Utilization of the intertidal zone of a salt marsh by the blue crab Callinectes sapidus: density, return frequency, and feeding habits. Marine Ecology Progress Series 76: 249–260.

    Article  Google Scholar 

  • Fitz, H.C., and R.G. Wiegert. 1992. Local population dynamics of estuarine blue crabs: abundance, recruitment and loss. Marine Ecology Progress Series 87: 23–40.

    Article  Google Scholar 

  • Fulford, R.S., M.S. Peterson, and P.O. Grammer. 2011. An ecological model of the habitat mosaic in estuarine nursery areas: part I–interaction of dispersal theory and habitat variability in describing juvenile fish distributions. Ecological Modelling 222 (17): 3203–3215.

    Article  Google Scholar 

  • Fulweiler, R.W., A.J. Oczkowski, K.M. Miller, C.A. Oviatt, and M.E.Q. Pilson. 2015. Whole truths vs. half truths – and a search for clarity in long-term water temperature records. Estuarine, Coastal and Shelf Science 157: A1–A6.

    Article  Google Scholar 

  • Ganju, N.K., Z. Defne, M.L. Kirwan, S. Fagherazzi, A. D’Alpaos, and L. Carniello. 2017. Spatially integrative metrics reveal hidden vulnerability of microtidal salt marshes. Nature Communications 8 (1). https://doi.org/10.1038/ncomms14156.

  • Gayanilo, F.C., Jr., P. Sparre, and D. Pauly. 2002. FAO–ICLARM fish stock assessment tools (FiSAT II): user’s manual. Rome: International Center for Living Aquatic Resources Management and Food and Agriculture Organization of the United Nations.

    Google Scholar 

  • Gillanders, B., K. Able, J. Brown, D.B. Eggleston, and P.F. Sheridan. 2003. Evidence of connectivity between juvenile and adult habitats for mobile marine fauna: an important component of nurseries. Marine Ecology Progress Series 247: 281–295.

    Article  Google Scholar 

  • Glandon, H.L., K.H. Kilbourne, and T.J. Miller. 2019. Winter is (not) coming: warming temperatures will affect the overwinter behavior and survival of blue crab. PLoS One 14 (7): e0219555.

    Article  CAS  Google Scholar 

  • Guillory, V. 2000. Relationship of blue crab abundance to river discharge and salinity. Proceedings of the 510 Annual Conference of Southeast Association of Fisheries and Wildlife Agencies 54: 213–220.

  • Guillory, V., H. Perry, and S. VanderKooy. 2001. The blue crab fishery of the Gulf of Mexico, United States: a regional management plan. Gulf States Marine Fisheries Commission, Ocean Springs.

  • Hammerschmidt, P.C. 1982. Population trends and commercial harvest of the blue crab Callinectes sapidus Rathbun, in Texas bays September 1978–August 1979. Texas parks and wildlife, coastal fisheries branch, management data series 38, Austin, TX.

  • Heck, K.L., Jr., K.W. Able, M.P. Fahay, and C.T. Roman. 1989. Fishes and decapod crustaceans of Cape Cod eelgrass meadows: species composition and seasonal abundance patterns. Estuaries 12 (2): 59–65.

    Article  Google Scholar 

  • Heck, K.L., Jr., G. Hays, and R.J. Orth. 2003. Critical evaluation of the nursery role hypothesis for seagrass meadows. Marine Ecology Progress Series 253: 123–136.

    Article  Google Scholar 

  • Hines, A.H. 2007. Ecology of juvenile and adult blue crabs. In The blue crab Callinectes sapidus, ed. V.S. Kennedy and L.E. Cronin, 565–654. College Park, MD: Maryland Sea Grant College Program.

    Google Scholar 

  • Hines, A.H., and G.M. Ruiz. 1995. Temporal variation in juvenile blue crab mortality: nearshore shallows and cannibalism in Chesapeake Bay. Bulletin of Marine Science 57: 884–901.

    Google Scholar 

  • Hines, A.H., R.N. Lipcius, and H.A. Mark. 1987. Population dynamics and habitat partitioning by size, sex and molt stage of blue crabs Callinectes sapidus in a subestuary of Central Chesapeake Bay. Marine Ecology Progress Series 36: 55–64.

    Article  Google Scholar 

  • Hines, A.H., E.G. Johnson, M.Z. Darnell, D. Rittschof, T.J. Miller, L.J. Bauer, P. Rodgers, and R. Aguilar. 2010. Predicting effects of climate change on blue crabs in Chesapeake Bay. In Biology and management of exploited crab populations under climate change, ed. G.H. Kruse, G.L. Eckert, R.J. Foy, R.N. Lipcius, B. Sainte-Marie, D.L. Stram, and D. Woodby, 109–127. University of Alaska Fairbanks: Alaska Sea Grant.

    Google Scholar 

  • Homer, M., J.A. Mihursky, and P. Jones. 1980. Quantitative approaches towards characterizing estuarine fish populations and communities. In Proceedings of the 4th Annual Meeting of the Potomac Chapter, American Fisheries Society, ed. R.H. Schaefer, 39–99. Fish and Wildlife Service, Washington, D.C.: U.S. Department of the Interior.

    Google Scholar 

  • Igulu, M.M., I. Nagelkerken, M. Dorenbosch, M.G.G. Grol, A.R. Harborne, I.A., Kimirei, P.J. Mumby, A.D. Olds, and Y.D. Mgaya. 2014. Mangrove habitat use by juvenile reef fish: meta-analysis reveals that tidal regime matters more than biogeographic region. PLoS One 9: e114715, 12.

  • James, N.C., T.D. Leslie, W.M. Potts, A.K. Whitfield, and A. Rajkaran. 2019. The importance of different juvenile habitats as nursery areas for a ubiquitous estuarine-dependent marine fish species. Estuarine, Coastal and Shelf Science 226: 106270. https://doi.org/10.1016/j.ecss.2019.106270.

    Article  Google Scholar 

  • Jivoff, P., A.H. Hines, and L.S. Quackenbush. 2007. Reproduction biology and embryonic development. In The blue crab Callinectes sapidus, ed. V.S. Kennedy and L.E. Cronin, 255–298. College Park, MD: Maryland Sea Grant College Program.

    Google Scholar 

  • Jivoff, P.R., J.M. Smith, V.L. Sodi, S.M. VanMorter, K.M. Faugno, A.L. Werda, and M.J. Shaw. 2017. Population structure of adult blue crabs, Callinectes sapidus, in relation to physical characteristics in Barnegat Bay, New Jersey. Estuaries and Coasts 40 (1): 235–250.

    Article  CAS  Google Scholar 

  • Johnson, D.S. 2015. The savory swimmer swims north: A northern range extension of the blue crab, Callinectes sapidus? Journal of Crustacean Biology 35 (1): 105–110.

    Article  Google Scholar 

  • Johnson, E.G., and D.B. Eggleston. 2010. Population density, survival and movement of blue crabs in estuarine salt marshes. Marine Ecology Progress Series 407: 135–147.

    Article  Google Scholar 

  • Kennedy, V.S., and L.E. Cronin. 2007. The blue crab Callinectes sapidus, 774. Maryland Sea Grant College Program, College Park, MD.

  • Kennedy, V.S., M. Oesterling, and W. van Engel. 2007. History of blue crab fisheries on the U.S. Atlantic and Gulf coasts. In The blue crab Callinectes sapidus, ed. V.S. Kennedy and L.E. Cronin, 595–649. College Park, MD: Maryland Sea Grant College Program.

    Google Scholar 

  • Kremer, J., and S. Nixon, 1978. A coastal marine ecosystem: simulation and analysis. In Ecological studies 24, 217. New York: Springer Verlag.

  • Lee, R.F., and M.E. Frischer. 2004. The decline of the blue crab. American Scientist 92 (6): 548–553.

    Article  Google Scholar 

  • Lefcheck, J.S., B.B. Hughes, A.J. Johnson, B.W. Pfirrmann, D.B. Rasher, A.R. Smyth, B.L. Williams, M.W. Beck, and R.J. Orth. 2019. Are coastal habitats important nurseries? A meta-analysis. Conservation Letters 12: e12645.

    Article  Google Scholar 

  • Lipcius, R.N., R.D. Seitz, M.S. Seebo, and D. Colón-Carrión. 2005. Density, abundance and survival of the blue crab in seagrass and unstructured salt marsh nurseries of Chesapeake Bay. Journal of Experimental Marine Biology and Ecology 219: 69–80.

    Article  Google Scholar 

  • Lipcius, R.N., D.B. Eggleston, K.L. Heck Jr., R.D. Seitz, and J. van Montfrans. 2007. Ecology of juvenile and adult blue crabs. In The blue crab Callinectes sapidus, ed. V.S. Kennedy and L.E. Cronin, 535–564. College Park, MD: Maryland Sea Grant College Program.

    Google Scholar 

  • Lotze, H.K., H.S. Lenihan, B.J. Bourque, R.H. Bradbury, R.G. Cooke, M.C. Kay, S.M. Kidwell, M.X. Kirby, C.H. Peterson, and J.B.C. Jackson. 2006. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312 (5781): 1806–1809.

    Article  CAS  Google Scholar 

  • Mansour, R.A., and R.N. Lipcius. 1991. Density-dependent foraging and mutual interference in blue crabs preying upon infaunal clams. Marine Ecology Progress Series 72: 239–246.

    Article  Google Scholar 

  • McClintock, J.B., K.R. Marion, J. Dindo, P.-W. Hsueh, and R.A. Angus. 1993. Population studies of blue crabs in soft-bottom, unvegetated habitats of a subestuary in the northern Gulf of Mexico. Journal of Crustacean Biology 13 (3): 551–563.

    Article  Google Scholar 

  • McDevitt-Irwin, J.M., J.C. Iacarella, and J.K. Baum. 2016. Reassessing the nursery role of seagrass habitats from temperate to tropical regions: a meta-analysis. Marine Ecology Progress Series 557: 133–143.

    Article  Google Scholar 

  • Medici, D.A., T.G. Wolcott, and D.L. Wolcott. 2006. Scale-dependent movements and protection of female blue crabs (Callinectes sapidus). Canadian Journal of Fisheries and Aquatic Sciences 63 (4): 858–871.

    Article  Google Scholar 

  • Mense, D.J., and E.L. Wenner. 1989. Distribution and abundance of early life history stages of the blue crab, Callinectes sapidus, in tidal marsh creeks near Charleston, South Carolina. Estuaries 12 (3): 157–168.

    Article  Google Scholar 

  • Miller, J.M., L.B. Crowder, and M.L. Moser. 1985. Migration and utilization of estuarine nurseries by juvenile fishes: an evolutionary perspective. Contributions in Marine Science 27: 338–352.

    Google Scholar 

  • Millikin, M.R., and A.B. Williams. 1984. Synopsis of biological data on the blue crab, Callinectes sapidus Rathbun. NOAA technical report NMFS 51, 1–38. Fisheries Synopsis No. 138.

  • Minello, T.J., K.W. Able, M.P. Weinstein, and C.G. Hays. 2003. Salt marshes as nurseries for nekton: testing hypotheses on density, growth and survival through meta-analysis. Marine Ecology Progress Series 246: 39–59.

    Article  Google Scholar 

  • Moksnes, P.-O. 2004. Interference competition for space in nursery habitats: density-dependent effects on growth and dispersal in juvenile shore crabs Carcinus maenas. Marine Ecology Progress Series 281: 181–191.

    Article  Google Scholar 

  • Moksnes, P.-O., R.N. Lipcius, L. Pihl, and J. van Montfrans. 1997. Cannibal-prey dynamics in young juveniles and postlarvae of the blue crab. Journal of Experimental Marine Biology and Ecology 215 (2): 157–187.

    Article  Google Scholar 

  • More, W.R. 1969. A contribution to the biology of the blue crab (Callinectes sapidus Rathbun) in Texas, with a description of the fishery. Texas Parks and Wildlife Department, Technical Series 1: 31 p.

  • Murray, D.W., W.L. Prell, C.E. Rincon, and E. Saarman. 2007. Physical property and chemical characteristics of surface sediment grab samples from Narragansett Bay and the Providence and Seekonk Rivers, a summary of the Brown University Narragansett Bay Sediment Project (BUNBSP), Narragansett Bay Estuary Program, Report NBEP-07-127.

  • Nagelkerken, I., G. der Velde, M.W. Gorissen, G.J. Meijer, T. Van’t Hof, and C. Den Hartog. 2000. Importance of mangroves, seagrass beds and the shallow coral reef as a nursery for important coral reef fishes, using a visual census technique. Estuarine, Coastal and Shelf Science 51 (1): 31–44.

    Article  Google Scholar 

  • Nagelkerken, I., M. Sheaves, R. Baker, and R.M. Connolly. 2015. The seascape nursery: a novel spatial approach to identify and manage nurseries for coastal marine fauna. Fish and Fisheries 16 (2): 362–371.

    Article  Google Scholar 

  • NBEP, Narragansett Bay Estuary Program. 2017. Chapter 12: Salt marsh. In State of Narragansett Bay and its watershed technical report, 235–245. Providence, RI.

  • Nestlerode, J.A., and R.J. Diaz. 1998. Effects of periodic environmental hypoxia on predation of a tethered polychaete, Glycera americana: implications for trophic dynamics. Marine Ecology Progress Series 172: 185–195.

    Article  Google Scholar 

  • Oesterling, M.J., and C.A. Adams. 1982. Migration of blue crabs along Florida’s Gulf Coast. In Proceedings of the Blue Crab Colloquium, eds. H.M. Perry, and W.A. Van Engel, 37–57. Gulf States Marine Fisheries Commission Publication 7. Ocean Springs, MS.

  • Orth, R.J., and J. van Montfrans. 1987. Utilization of a seagrass meadow and tidal marsh creek by blue crabs Callinectes sapidus. I. Seasonal and annual variations on abundance with emphasis on post-settlement juveniles. Marine Ecology Progress Series 41: 283–294.

    Article  Google Scholar 

  • Orth, R.J., and J. van Montfrans. 1990. Utilization of marsh and seagrass habitats by early stages of Callinectes sapidus: a latitudinal perspective. Bulletin of Marine Science 46: 126–144.

    Google Scholar 

  • Pequeux, A. 1995. Osmotic regulation in crustaceans. Journal of Crustacean Biology 15 (1): 1–60.

    Article  Google Scholar 

  • Perkins-Visser, E., T.G. Wolcott, and D.L. Wolcott. 1996. Nursery role of seagrass beds: enhanced growth of juvenile blue crabs (Callinectes sapidus Rathbun). Journal of Experimental Marine Biology and Ecology 198 (2): 155–173.

    Article  Google Scholar 

  • Perry, H.M. 1975. The blue crab fishery in Mississippi. Gulf Research Reports 5: 39–57.

    Article  Google Scholar 

  • Peterson, M.S. 2003. A conceptual view of environment-habitat-production linkages in tidal river estuaries. Reviews in Fisheries Science 11 (4): 291–313.

    Article  Google Scholar 

  • Phil, L., S.P. Baden, and R.J. Diaz. 1991. Effects of periodic hypoxia on distribution of demersal fish and crustaceans. Marine Biology 108: 349–360.

    Article  Google Scholar 

  • Polidoro, B.A., K.E. Carpenter, L. Collins, N.C. Duke, A.M. Ellison, J.C. Ellison, E.J. Farnsworth, E.S. Fernando, K. Kathiresan, N.E. Koedam, S.R. Livingstone, T. Miyagi, G.E. Moore, V. Ngoc Nam, J.E. Ong, J.H. Primavera, S.G. Salmo, J.C. Sanciangco, S. Sukardjo, Y. Wang, and J.W.H. Yong. 2010. The loss of species: mangrove extinction risk and geographic areas of global concern. PLoS One 5 (4): e10095.

    Article  CAS  Google Scholar 

  • Posey, M.H., T.D. Alphin, H. Harwell, and B. Allen. 2005. Importance of low salinity areas for juvenile blue crabs, Callinectes sapidus Rathbun, in river-dominated estuaries of the southeastern United States. Journal of Experimental Marine Biology and Ecology 319 (1-2): 81–100.

    Article  Google Scholar 

  • Puckett, B.J. 2006. Growth and recruitment rates of juvenile blue crabs (Callinectes sapidus) in Chesapeake Bay. M.S. thesis: University of Maryland, College Park, MD.

    Google Scholar 

  • Quist, M.C., K.G. Gerow, M.R. Bower, and W.A. Hubert. 2006. Random versus fixed-site sampling when monitoring relative abundance of fishes in headwater streams of the upper Colorado River basin. North American Journal of Fisheries Management. 26 (4): 1011–1019.

    Article  Google Scholar 

  • Rakocinski, C.F., H.M. Perry, M.A. Abney, and K.M. Larsen. 2003. Soft-sediment recruitment dynamics of early blue crab stages in Mississippi sound. Bulletin of Marine Science 72: 393–408.

    Google Scholar 

  • Reiss, H., I. Kröncke, and S. Ehrich. 2006. Estimating the catching efficiency of a 2-m beam trawl for sampling epifauna by removal experiments. ICES Journal of Marine Science 63 (8): 1453–1464.

    Article  Google Scholar 

  • Reyns, N.B., and D.B. Eggleston. 2004. Environmentally controlled, density-dependent secondary dispersal in a local estuarine crab population. Oecologia 140 (2): 280–288.

    Article  Google Scholar 

  • Rome, M.S., A.C. Young-Williams, G.R. Davis, and A.H. Hines. 2005. Linking temperature and salinity tolerance to winter mortality of Chesapeake Bay blue crabs (Callinectes sapidus). Journal of Experimental Marine Biology and Ecology 319 (1-2): 129–145.

    Article  Google Scholar 

  • Ropes, J.W. 1989. The food habits of five crab species at Pettaquamscutt River, Rhode Island. Fishery Bulletin 87: 197–204.

    Google Scholar 

  • Ross, S.W. 2003. The relative value of different estuarine nursery areas in North Carolina for transient juvenile fishes. Fishery Bulletin 101: 384–404.

    Google Scholar 

  • Rountree, R.A., and K.W. Able. 1992. Fauna of polyhaline subtidal marsh creeks in southern New Jersey: composition, abundance and biomass. Estuaries 15 (2): 171–185.

    Article  Google Scholar 

  • Rozas, L.P., and C.T. Hackney. 1984. Use of oligohaline marshes by fishes and macrofaunal crustaceans in North Carolina. Estuaries 7 (3): 213–224.

    Article  Google Scholar 

  • Rudnick, D.T., R. Elmgren, and J.B. Frithsen. 1985. Meiofaunal prominence and benthic seasonality in a coastal marine ecosystem. Oecologia 67 (2): 157–168.

    Article  CAS  Google Scholar 

  • Ruiz, G.M., A.H. Hines, and M.H. Posey. 1993. Shallow water as a refuge habitat for fish and crustaceans in non-vegetated estuaries: an example from Chesapeake Bay. Marine Ecology Progress Series 99: 1–16.

    Article  Google Scholar 

  • Saarman, E., W.L. Prell, D.W. Murray, and C.F. Deacutis. 2008. Summer bottom water dissolved oxygen in Upper Narragansett Bay. In Science for ecosystem-based management: Narragansett Bay in the 21st century, ed. A. Desbonnet and B.A. Costa-Pierce, 325–348. New York: Springer Verlag.

    Chapter  Google Scholar 

  • Sanchez-Rubio, G., H.M. Perry, P.M. Perry, D.R. Johnson Biesiot, and R.N. Lipcius. 2011. Climate-related hydrological regimes and their effects on abundance of juvenile blue crabs (Callinectes sapidus) in the northcentral Gulf of Mexico. Fishery Bulletin 109: 139–146.

    Google Scholar 

  • Sandoz, M., and R. Rogers. 1944. The effect of environmental factors on hatching, moulting, and survival of zoea larvae of the blue crab Callinectes sapidus Rathbun. Ecology 25 (2): 216–228.

    Article  Google Scholar 

  • Seitz, R.D., R.N. Lipcius, W.T. Stockhausen, K.A. Delano, M.S. Seebo, and P.D. Gerdes. 2003a. Potential bottom-up control of blue crab (Callinectes sapidus) distribution at broad spatial scales. Bulletin of Marine Science 72: 471–490.

    Google Scholar 

  • Seitz, R.D., L.S. Marshall, A.H. Hines, and K.L. Clark. 2003b. Effects of hypoxia on predator-prey dynamics of the blue crab Callinectes sapidus and the Baltic clam Macoma balthica in Chesapeake Bay. Marine Ecology Progress Series 257: 179–188.

    Article  Google Scholar 

  • Seitz, R.D., R.N. Lipcius, and M.S. Seebo. 2005. Food availability and growth of the blue crab in seagrass and unvegetated nurseries of Chesapeake Bay. Journal of Experimental Marine Biology and Ecology 319 (1-2): 57–68.

    Article  Google Scholar 

  • Seitz, R.D., R.N. Lipcius, and A.H. Hines. 2017. Consumer versus resource control and the importance of habitat heterogeneity for estuarine bivalves. Oikos 126 (1): 121–135.

    Article  CAS  Google Scholar 

  • Sheaves, M. 2009. Consequences of ecological connectivity: the coastal ecosystem mosaic. Marine Ecology Progress Series 391: 107–115.

    Article  Google Scholar 

  • Sheridan, P., and C. Hays. 2003. Are mangroves nursery habitat for transient fishes and decapods? Wetlands 23 (2): 449–458.

    Article  Google Scholar 

  • Shervette, V.R., F. Gelwick, and N. Hadley. 2011. Decapod utilization of adjacent oyster, vegetated marsh, and non-vegetated bottom habitats in a Gulf of Mexico estuary. Journal of Crustacean Biology 31: 660–667.

    Article  Google Scholar 

  • Smith, L.M., S. Whitehouse, and C.A. Oviatt. 2010. Impacts of climate change on Narragansett Bay. Northeastern Naturalist 17: 77–90.

    Article  Google Scholar 

  • Sogard, S.M., and K.W. Able. 1991. A comparison of eelgrass, sea lettuce, macroalgae, and marsh creeks as habitat for epibenthic fishes and decapod crustaceans. Estuarine, Coastal and Shelf Science 33 (5): 501–520.

    Article  Google Scholar 

  • Steele, M.A., S.C. Schroeter, and H.M. Page. 2006. Experimental evaluation of biases associated with sampling estuarine fishes with seines. Estuaries and Coasts 29 (6): 1172–1184.

    Article  Google Scholar 

  • Stover, K.K., K.G. Burnett, E.J. McElory, and L.E. Burnett. 2013. Locomotory fatigue during moderate and severe hypoxia and hypercapnia in the Atlantic blue crab, Callinectes sapidus. Biological Bulletin 224 (2): 68–78.

    Article  Google Scholar 

  • Sumer, C., I. Teksam, H. Karatas, T. Beyhan, and C.M. Aydin. 2013. Growth and reproduction biology of the blue crab, Callinectes sapidus Rathbun, 1896, in the Beymelek lagoon (southwestern coast of Turkey). Turkish Journal of Fisheries and Aquatic Sciences 13: 675–684.

    Article  Google Scholar 

  • Tankersley, R.A., and R.B. Forward Jr. 2007. Environmental physiology. In The blue crab Callinectes sapidus, ed. V.S. Kennedy and L.E. Cronin, 451–483. College Park, MD: Maryland Sea Grant College Program.

    Google Scholar 

  • Tankersley, R., M. Wieber, M. Sigala, and K. Kachurak. 1998. Migratory behavior of ovigerous blue crabs Callinectes sapidus: evidence for selective tidal-stream transport. Biological Bulletin 195 (2): 168–173.

    Article  CAS  Google Scholar 

  • Tatum, W. 1980. The blue crab fishery of Alabama. In Symposium on the Natural Resources of the Mobile Estuary, Alabama, eds. H.A. Loyacano, and J. Smith, 211–220. Mississippi/Alabama Sea Grant Consortium, publication MASGP-80-022.

  • Taylor, D.L., and N.M. Calabrese. 2018. Mercury content of blue crabs (Callinectes sapdius) in southern New England coastal habitats: contamination in an emergent fishery and risks to human consumers. Marine Pollution Bulletin 126: 166–178.

    Article  CAS  Google Scholar 

  • Taylor, D.L., and D.B. Eggleston. 2000. Effects of hypoxia on an estuarine predator-prey interaction: foraging behavior and mutual interference in the blue crab Callinectes sapidus and the infaunal clam prey Mya arenaria. Marine Ecology Progress Series 196: 221–237.

    Article  Google Scholar 

  • Taylor, D.L., and C.L. Gervasi. 2017. Feeding habits and dietary overlap between age-0 winter flounder (Pseudopleuronectes americanus) and summer flounder (Paralichthys dentatus) in southern New England tidal rivers. Fishery Bulletin 115 (2): 167–185.

    Article  Google Scholar 

  • Taylor, D.L., J. McNamee, J. Lake, C.L. Gervasi, and D.G. Palance. 2016. Juvenile winter flounder (Pseudopleuronectes americanus) and summer flounder (Paralichthys dentatus) utilization of southern New England nurseries: comparisons among estuarine, tidal river, and coastal lagoon shallow-water habitats. Estuaries and Coasts 3: 1505–1525.

    Article  Google Scholar 

  • Thomas, J.L., R.J. Zimmerman, and T.J. Minello. 1990. Abundance patterns of juvenile blue crabs (Callinectes sapidus) in nursery habitats of two Texas bays. Bulletin of Marine Science 46: 115–125.

    Google Scholar 

  • van Montfrans, J., C.H. Ryer, and R.J. Orth. 1991. Population dynamics of the blue crab Callinectes sapidus Rathbun in a lower Chesapeake Bay tidal marsh creek. Journal of Experimental Marine Biology and Ecology 153 (1): 1–14.

    Article  Google Scholar 

  • Watson, E.B., C. Wigand, E.W. Davey, H.M. Andrews, J. Bishop, and K.B. Raposa. 2017. Wetland loss patterns and inundation-productivity relationships prognosticate widespread salt mash loss for southern New England. Estuaries and Coasts 40 (3): 662–681.

    Article  CAS  Google Scholar 

  • Waycott, M., C.M. Duarte, T.J.B. Carruthers, R.J. Orth, W.C. Dennison, S. Olyarnik, A. Calladine, J.W. Fourqurean, K.L. Heck, A.R. Hughes, G.A. Kendrick, W.J. Kenworthy, F.T. Short, and S.L. Williams. 2009. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proceedings of the National Academy of Sciences USA 106 (30): 12377–12381.

    Article  CAS  Google Scholar 

  • Wilber, D.H. 1994. The influence of Apalachicola River flows on blue crab, Callinectes sapidus, in North Florida. Fishery Bulletin 92: 180–188.

    Google Scholar 

  • Wilson, K.A., K.W. Able, and K.L. Heck Jr. 1990. Habitat use by juvenile blue crabs: a comparison among habitats in southern New Jersey. Bulletin of Marine Science 46: 105–114.

    Google Scholar 

  • Zimmerman, R.J., and T.J. Minello. 1984. Densities of Penaeus aztecus, Penaeus setiferus and other natant macrofauna in a Texas salt marsh. Estuaries 7 (4): 421–433.

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to A. Scro, N. Calabrese, J. Jacques, and K. Cribari [Roger Williams University (RWU), Bristol, RI] for assistance in field sampling. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Center for Research Resources or the National Institutes of Health.

Funding

The project described was supported in part by the Rhode Island (RI) National Science Foundation Experimental Program to Stimulate Competitive Research, the RI Science & Technology Advisory Council Research Alliance Collaborative Grant, the RWU Foundation Fund Based Research Grant, and by Award P20RR016457 from the National Center for Research Resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. Taylor.

Additional information

Communicated by Melisa C. Wong

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taylor, D.L., Fehon, M.M. Blue Crab (Callinectes sapidus) Population Structure in Southern New England Tidal Rivers: Patterns of Shallow-Water, Unvegetated Habitat Use and Quality. Estuaries and Coasts 44, 1320–1343 (2021). https://doi.org/10.1007/s12237-020-00867-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-020-00867-1

Keywords

Navigation