Skip to main content
Log in

Litter Decomposition and Nutrient Dynamics of Native Species (Cyperus malaccensis) and Alien Invasive Species (Spartina alterniflora) in a Typical Subtropical Estuary (Min River) in China

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Plant invasion can affect nutrient cycling by changing the quantity and quality of litter entering the environment. To determine the effect of an alien species (Spartina alterniflora) invasion on the decomposition rates and nutrient dynamics of litter in the Min River estuary, three communities with differing levels of invasion, namely, a Cyperus malaccensis community (before invasion, BI stage), a S. alterniflora community (after invasion, AI stage), and a C. malaccensisS. alterniflora community (during invasion, DI stage), were studied using the space-for-time substitution method. Results showed that the decomposition of C. malaccensis was 59.79% faster than that of S. alterniflora, which was mainly related to the great variations in the C/N and lignin. Compared with S. alterniflora, the N (nitrogen) and S (sulfur) concentrations of litter in C. malaccensis were significantly higher. The C, N, and S stocks increased as the C. malaccensis was being invaded or after complete invasion by S. alterniflora, which might be ascribed to the higher mass remaining in S. alterniflora. Compared with S. alterniflora in DI stage, the higher C/N and C/S ratios might explain the higher C, N, and S stocks in S. alterniflora in AI stage. In summary, the invasion of S. alterniflora reduces the decomposition rate and nutrient release of litter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allison, S.D., and P.M. Vitousek. 2004. Rapid nutrient cycling in leaf litter from invasive plants in Hawai’i. Oecologia. 141 (4): 612–619.

    Article  Google Scholar 

  • Baker, T.T., B.G. Lockaby, W.H. Conner, C.E. Meier, J.A. Stanturf, and M.K. Burke. 2001. Leaf litter decomposition and nutrient dynamics in four southern forested floodplain communities. Soil Science Society of America Journal 65 (4): 1334–1347.

    Article  CAS  Google Scholar 

  • Baldwin, D.S., G.N. Rees, A.M. Mitchell, G. Watson, and J. Williams. 2006. The short-term effects of salinization on anaerobic nutrient cycling and microbial community structure in sediment from a freshwater wetland. Wetlands. 26 (2): 455–464.

    Article  Google Scholar 

  • Chai, M., F. Shi, R. Li, and X. Shen. 2014. Heavy metal contamination and ecological risk in Spartina alterniflora marsh in intertidal sediments of Bohai Bay, China. Marine Pollution Bulletin 84 (1–2): 115–124.

    Article  CAS  Google Scholar 

  • Chen, Z., L. Guo, B. Jin, J. Wu, and G. Zheng. 2009. Effect of the exotic plant Spartina alterniflora on macrobenthos communities in salt marshes of the Yangtze River Estuary, China. Estuarine Coastal and Shelf Science 82 (2): 265–272.

    Article  Google Scholar 

  • Cheng, X., J. Chen, Y. Luo, R. Henderson, S. An, Q. Zhang, J. Chen, and B. Li. 2008. Assessing the effects of short-term Spartina alterniflora invasion on labile and recalcitrant C and N pools by means of soil fractionation and stable C and N isotopes. Geoderma. 145 (3–4): 177–184.

    Article  CAS  Google Scholar 

  • Craft, C.B. 2007. Freshwater input structures soil properties, vertical accretion and nutrient accumulation of Georgia and United States (US) tidal marshes. Limnology and Oceanography 52 (3): 1220–1230.

    Article  CAS  Google Scholar 

  • Deng, Z., S. An, C. Zhao, L. Chen, C. Zhou, Y. Zhi, and H. Li. 2008. Sediment burial stimulates the growth and propagule production of Spartina alterniflora Loisel. Estuarine Coastal and Shelf Science 76 (4): 818–826.

    Article  Google Scholar 

  • Deng, Z., Y. Ouyang, X. Xie, H. Qing, Y. Xiao, and S. An. 2010. The effects of primary process of global change on biological invasion in coastal ecosystem. Biodiversity Science 18 (6): 605–614.

    Article  Google Scholar 

  • Ehrenfeld, J.G., and N. Scott. 2001. Invasive species and the soil: effects on organisms and ecosystem processes. Ecological Applications 11 (5): 1259–1260.

    Article  Google Scholar 

  • Ehrenfeld, J.G., B. Ravit, and K. Elgersma. 2005. Feedback in the plant-soil system. Annual Review of Environment and Resources 30 (1): 75–115.

    Article  Google Scholar 

  • Eppinga, M.B., M.A. Kaproth, A.R. Collins, and J. Molofsky. 2011. Litter feedbacks, evolutionary change and exotic plant invasion. Journal of Ecology 99 (2): 503–514.

    Google Scholar 

  • Gessner, M.O. 2000. Breakdown and nutrient dynamics of submerged Phragmites shoots in the littoral zone of a temperate hardwater lake. Aquatic Botany 66 (1): 9–20.

    Article  Google Scholar 

  • Gessner, M.O. 2001. Mass loss, fungal colonisation and nutrient dynamics of Phragmites australis leaves during senescence and early aerial decay. Aquatic Botany 69 (2–4): 325–339.

    Article  Google Scholar 

  • González, A.L., J.S. Kominoski, M. Danger, S. Ishida, N. Iwai, and A. Rubach. 2010. Can ecological stoichiometry help explain patterns of biological invasions? Oikos. 119 (5): 779–790.

    Article  Google Scholar 

  • Heringer, G., J. Thiele, J.A.A. Meira-Neto, and A.V. Neri. 2019. Biological invasion threatens the sandy-savanna Mussununga ecosystem in the Brazilian Atlantic Forest. Biological Invasions 21 (6): 2045–2057.

    Article  Google Scholar 

  • Herrera, I., J.R. Ferrer-Paris, D. Benzo, S. Flores, B. Garcia, and J.M. Nassar. 2018. An invasive succulent plant (Kalanchoe daigremontiana) influences soil carbon and nitrogen mineralization in a Neotropical semiarid zone. Pedosphere. 28 (4): 632–643.

    Article  Google Scholar 

  • Holdredge, C., and M.D. Bertness. 2011. Litter legacy increases the competitive advantage of invasive Phragmites australis in New England wetlands. Biological Invasions 13 (2): 423–433.

    Article  Google Scholar 

  • Janousek, C.N., K.J. Buffington, G.R. Guntenspergen, K.M. Thorne, B.D. Dugger, and J.Y. Takekawa. 2017. Inundation, vegetation, and sediment effects on litter decomposition in Pacific Coast tidal marshes. Ecosystems. 20 (7): 1296–1310.

    Article  CAS  Google Scholar 

  • Jin, B., D.Y.F. Lai, D. Gao, C. Tong, and C. Zeng. 2017. Changes in soil organic carbon dynamics in a native C4 plant-dominated tidal marsh following Spartina alterniflora invasion. Pedosphere. 27 (5): 856–867.

    Article  Google Scholar 

  • Kaspari, M., M.N. Garcia, K.E. Harms, M. Santana, and J.B. Yavitt. 2008. Multiple nutrients limit litterfall and decomposition in a tropical forest. Ecology Letters 11 (1): 35–43.

    Google Scholar 

  • Li, H., and S.L. Yang. 2009. Trapping effect of tidal marsh vegetation on suspended sediment, Yangtze Delta. Journal of Coastal Research 254 (4): 915–924.

    Article  Google Scholar 

  • Li, J., S. Yang, Z. Zheng, G. Chen, X. Zou, and Z. Meng. 2009. Effect of anaerobic fermentation of Spartina alterniflora under mesophilic conditions on the changes of lignocellulosic structure. Transactions of the Chinese Society of Agricultural Engineering 25 (2): 199–203.

    Google Scholar 

  • Li, C.H., B. Wang, C. Ye, and Y.X. Ba. 2014. The release of nitrogen and phosphorus during the decomposition process of submerged macrophyte (Hydrilla verticillata royle) with different biomass levels. Ecological Engineering 70: 268–274.

    Article  Google Scholar 

  • Liao, C., Y. Luo, L. Jiang, X. Zhou, X. Wu, C. Fang, J. Chen, and B. Li. 2007. Invasion of Spartina alterniflora enhanced ecosystem carbon and nitrogen stocks in the Yangtze estuary, China. Ecosystems. 10 (8): 1351–1361.

    Article  CAS  Google Scholar 

  • Liao, C.Z., Y.Q. Luo, C.M. Fang, J.K. Chen, and B. Li. 2008. Litter pool sizes, decomposition, and nitrogen dynamics in Spartina alterniflora-invaded and native coastal marshlands of the Yangtze estuary. Oecologia. 156 (3): 589–600.

    Article  Google Scholar 

  • Lopes, M.L., P. Martins, F. Ricardo, A.M. Rodrigues, and V. Quintino. 2011. In situ experimental decomposition studies in estuaries: a comparison of Phragmites australis and Fucus vesiculosus. Estuarine Coastal and Shelf Science 92 (4): 573–580.

    Article  Google Scholar 

  • Lu, R.K. 2000. Analysis methods of soil and agro-chemistry. Beijing: China Agriculture Press.

    Google Scholar 

  • Martina, J.P., S.K. Hamilton, M.R. Turetsky, and C.J. Phillippo. 2014. Organic matter stocks increase with degree of invasion in temperate inland wetlands. Plant and Soil 385 (1–2): 107–123.

    Article  CAS  Google Scholar 

  • Mayer, P.M., S.J. Tunnell, D.M. Engle, E.E. Jorgensen, and P. Nunn. 2005. Invasive grass alters litter decomposition by influencing macrodetritivores. Ecosystems. 8 (2): 200–209.

    Article  Google Scholar 

  • Meier, C.L., and W.D. Bowman. 2008. Links between plant litter chemistry, species diversity, and below-ground ecosystem function. Proceedings of the National Academy of Sciences of the United States of America 105 (50): 19780–19785.

    Article  CAS  Google Scholar 

  • Moretto, A.S, and R.A. Distel. 2003. Decomposition of and nutrient dynamics in leaf litter and roots of Poa ligularis and Stipa gyneriodes. Journal of Arid Environments 55 (3): 503–514.

  • Musvoto, C., B.M. Campbell, and H. Kirchmann. 2000. Decomposition and nutrient release from mango and miombo woodland litter in Zimbabwe. Soil Biology and Biochemistry 32 (8): 1111–1119.

    Article  CAS  Google Scholar 

  • Nielsen, T., and F.Ø. Andersen. 2003. Phosphorus dynamics during decomposition of mangrove (Rhizophora apiculata) leaves in sediments. Journal of Experimental Marine Biology and Ecology 293 (1): 73–88.

    Article  CAS  Google Scholar 

  • Olson, J.S., 1963. Energy storage and the balance of producers and decomposers in ecological systems. Ecology. 44(2), 322–331.

  • Parton, W., W.L. Silver, I.C. Burke, L. Grassens, M.E. Harmon, W.S. Currie, J.Y. King, E.C. Adair, L.A. Brandt, S.C. Hart, and B. Fasth. 2007. Global-scale similarities in nitrogen release patterns during long-term decomposition. Science. 315 (5810): 361–364.

    Article  CAS  Google Scholar 

  • Petraglia, A., C. Cacciatori, S. Chelli, G. Fenu, G. Calderisi, D. Gargano, T. Abeli, S. Orsenigo, and M. Carbognani. 2019. Litter decomposition: effects of temperature driven by soil moisture and vegetation type. Plant and Soil 435 (1–2): 187–200.

    Article  CAS  Google Scholar 

  • Rejmánková, E., and D. Sirová. 2007. Wetland macrophyte decomposition under different nutrient conditions: relationships between decomposition rate, enzyme activities and microbial biomass. Soil Biology and Biochemistry 39 (2): 526–538.

    Article  CAS  Google Scholar 

  • Roache, M.C., P.C. Bailey, and P.I. Boon. 2006. Effects of salinity on the decay of the freshwater macrophyte, Triglochin procerum. Aquatic Botany 84 (1): 45–52.

    Article  CAS  Google Scholar 

  • Rothstein, D.E., P.M. Vitousek, and B.L. Simmons. 2004. An exotic tree alters decomposition and nutrient cycling in a Hawaiian montane forest. Ecosystems. 7 (8): 805–814.

    Article  CAS  Google Scholar 

  • Sardans, J., and J. Penuelas. 2012. The role of plants in the effects of global change on nutrient availability and stoichiometry in the plant-soil system. Plant Physiology 160 (4): 1741–1761.

    Article  CAS  Google Scholar 

  • Sardans, J., I.A. Janssens, R. Alonso, S.D. Veresoglou, M.C. Rillig, T.G. Sanders, J. Carnicer, I. Filella, G. Farré-Armengol, and J. Peñuelas. 2015. Foliar elemental composition of European forest tree species associated with evolutionary traits and present environmental and competitive conditions. Global Ecology and Biogeography 24 (2): 240–255.

    Article  Google Scholar 

  • Shen, Y., R.S. Zhang, J.S. Yang, N.H. Feng, Q. Zhou, Y.M. Liu, et al. 2006. Experimental study on Spartina alterniflora and dam engineering for promoting deposition on tidal-flat in Jiangsu Province of China. Transations of the Chinese Society of Agricultural Engineering 22 (4): 42–47.

    CAS  Google Scholar 

  • Sun, Z., and X. Mou. 2016. Effects of sediment burial disturbance on macro and microelement dynamics in decomposing litter of Phragmites australis in the coastal marsh of the Yellow River estuary, China. Environemental Science and Pollution Research 23 (6): 5189–5202.

    Article  CAS  Google Scholar 

  • Sun, Z., X. Mou, and J.S. Liu. 2012. Effects of flooding regimes on the decomposition and nutrient dynamics of Calamagrostis angustifolia litter in the Sanjiang plain of China. Environment and Earth Science 66 (8): 2235–2246.

    Article  Google Scholar 

  • Sun, Z., W. Sun, C. Tong, C. Zeng, X. Yu, and X. Mou. 2015. China’s coastal wetlands: conservation history, implementation efforts, existing issues and strategies for future improvement. Environment International 79: 25–41.

    Article  Google Scholar 

  • Sun, Z., X. Mou, and W. Sun. 2016a. Potential effects of tidal flat variations on decomposition and nutrient dynamics of Phragmites australis, Suaeda salsa and Suaeda glauca litter in newly created marshes of the yellow river estuary, China. Ecological Engineering 93: 175–186.

    Article  Google Scholar 

  • Sun, Z., X. Mou, and W. Sun. 2016b. Decomposition and heavy metal variations of the typical halophyte litters in coastal marshes of the Yellow River estuary, China. Chemosphere 147: 163–172.

    Article  CAS  Google Scholar 

  • Tao, H.E., S. Zhigao, L.I. Jiabing, G. Hui, and F. Ailian. 2018. Variations in total sulfur content in plant-soil systems of Phragmites australis and Cyperus malaccensis in the process of their spatial expansion in the min river estuary. Acta Ecologica Sinica 38 (5): 1607–1618.

    Google Scholar 

  • Tong, C., and B.G. Liu. 2009. Litter decomposition and nutrient dynamics in different tidal water submergence environments of estuarine tidal wetland. Geographical Research 28: 118–128.

    Google Scholar 

  • Tong, C., L. Zhang, W. Wang, V. Gauci, R. Marrs, B. Liu, R. Jia, and C. Zeng. 2011. Contrasting nutrient stocks and litter decomposition in stands of native and invasive species in a sub-tropical estuarine marsh. Environmental Research 111 (7): 909–916.

    Article  CAS  Google Scholar 

  • Tong, C., W.Q. Wang, J.F. Huang, V. Gauci, L.H. Zhang, and C.S. Zeng. 2012. Invasive alien plants increase CH4 emissions from a subtropical tidal estuarine wetland. Biogeochemistry. 111 (1–3): 677–693.

    Article  CAS  Google Scholar 

  • Tuchman, N.C., D.J. Larkin, P. Geddes, R. Wildova, K.J. Jankowski, and D.E. Goldberg. 2009. Patterns of environmental change associated with Typhax glauca invasion in a great lakes coastal wetland. Wetlands. 29 (3): 964–975.

    Article  Google Scholar 

  • Vaccaro, L.E., B.L. Bedford, and C.A. Johnston. 2009. Litter accumulation promotes dominance of invasive species of cattails (Typha spp.) in Lake Ontario wetlands. Wetlands. 29 (3): 1036–1048.

    Article  Google Scholar 

  • Vargo, S.M., R.K. Neely, and S.M. Kirkwood. 1998. Emergent plant decomposition and sedimentation: response to sediments varying in texture, phosphorus content and frequency of deposition. Environmental and Experimental Botany 40 (1): 43–58.

    Article  Google Scholar 

  • Wang, Q., S.Q. An, Z.J. Ma, J.K. Chen, B. Zhao, and B. Li. 2006. Invasive Spartina alterniflora: biology, ecology and management. Acta Phytotaxonomica Sinica 44 (5): 559–588.

    Article  Google Scholar 

  • Wang, R., L. Yuan, and L. Zhang. 2010. Impacts of Spartina alterniflora invasion on the benthic communities of salt marshes in the Yangtze estuary, China. Ecological Engineering 36 (6): 799–806.

    Article  Google Scholar 

  • Wang, W.Q., C. Wang, J. Sardans, C.S. Zeng, C. Tong, and J. Peñuelas. 2015. Plant invasive success associated with higher N-use efficiency and stoichiometric shifts in the soil–plant system in the Minjiang River tidal estuarine wetlands of China. Wetlands Ecology and Management 23 (5): 865–880.

    Article  CAS  Google Scholar 

  • Wang, M., T. Hao, X. Deng, Z. Wang, Z. Cai, and Z. Li. 2017. Effects of sediment-borne nutrient and litter quality on macrophyte decomposition and nutrient release. Hydrobiologia. 787 (1): 205–215.

    Article  CAS  Google Scholar 

  • Yang, W., H. Zhao, X. Chen, S. Yin, X. Cheng, and S. An. 2013. Consequences of short-term C4 plant Spartina alterniflora invasions for soil organic carbon dynamics in a coastal wetland of Eastern China. Ecological Engineering 61: 50–57.

    Article  Google Scholar 

  • Yang, W., H. Zhao, X. Leng, X. Cheng, and S. An. 2017. Soil organic carbon and nitrogen dynamics following, Spartina alterniflora, invasion in a coastal wetland of eastern China. Catena. 156: 281–289.

    Article  CAS  Google Scholar 

  • Yu, X., J. Yang, L. Liu, Y. Tian, and Z. Yu. 2015. Effects of Spartina alterniflora invasion on biogenic elements in a subtropical coastal mangrove wetland. Environemental Science and Pollution Research 22 (4): 3107–3115.

    Article  CAS  Google Scholar 

  • Zhang, W., C. Zeng, C. Tong, Z. Zhang, and J. Huang. 2011. Analysis of the expanding process of the Spartina alterniflora salt marsh in Shanyutan Wetland, Minjiang River estuary by remote sensing. Procedia Environmental Sciences 10 (1): 2472–2477.

    Article  Google Scholar 

  • Zhang, L.H., C.S. Zeng, W.J. Zhang, T.E. Wang, and C. Tong. 2012. Litter decomposition and its main affecting factors in tidal marshes of Minjiang River Estuary, East China. Chinese Journal of Applied Ecology 23 (9): 2404–2410.

    CAS  Google Scholar 

  • Zhang, L.H., C. Tong, R. Marrs, T.E. Wang, W.J. Zhang, and C.S. Zeng. 2014. Comparing litter dynamics of Phragmites australis and Spartina alterniflora in a sub-tropical Chinese estuary: contrasts in early and late decomposition. Aquatic Botany 117 (5): 1–11.

    Article  Google Scholar 

  • Zhang, W.L., Zeng, C.S., Tong, C., Zhai, S.J., Lin, X., Gao, D.Z., 2015. Spatial distribution of phosphorus speciation in marsh sediments along a hydrologic gradient in a subtropical estuarine wetland, China. Estuar. Coast. Shelf. S. 154, 30–38.

  • Zhang, P., M. Nie, B. Li, and J.H. Wu. 2017. The transfer and allocation of newly fixed C by invasive, Spartina alterniflora, and native, Phragmites australis, to soil microbiota. Soil Biology and Biochemistry 113: 231–239.

    Article  CAS  Google Scholar 

  • Zheng, C.H., Zeng, C.S., Chen, Z.Q., and M.C. Lin. 2006. A study on the changes of landscape pattern of estuary wetlands of the Minjiang River. Wetland Science. 4 (1): 29–34.

Download references

Funding

This study was financially supported by the National Nature Science Foundation of China (No. 41971128), the Key foundation of Science and Technology Department of Fujian Province (No. 2016R1032-1), and the Award Program for Min River Scholar in Fujian Province (No. Min[2015]31).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Congsheng Zeng or Zhigao Sun.

Additional information

Communicated by Carles Ibanez Marti

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, A., Hu, W., Zeng, C. et al. Litter Decomposition and Nutrient Dynamics of Native Species (Cyperus malaccensis) and Alien Invasive Species (Spartina alterniflora) in a Typical Subtropical Estuary (Min River) in China. Estuaries and Coasts 43, 1873–1883 (2020). https://doi.org/10.1007/s12237-020-00744-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-020-00744-x

Keywords

Navigation