Skip to main content

Advertisement

Log in

Spatio-Temporal Changes in Basal Food Source Assimilation by Fish Assemblages in a Large Tropical Bay in the SW Atlantic Ocean

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Understanding food pathways in estuarine communities is essential to improve our ability to cope with the increasing effects of man-made activities and climate variability on the biodiversity of coastal systems. Herein, we analyzed carbon and nitrogen isotope ratios of food web components in a large tropical bay in the southwestern Atlantic, in order to investigate spatial and temporal changes in the assimilation of basal food sources by fishes. Two hypotheses were evaluated: (i) continental-derived organic matter assimilation and isotopic niches of fish trophic guilds will increase during higher rainfall conditions and (ii) relative mangrove and macroalgae-derived nutrients assimilation will be directly proportional to their relative availability at each location. Our results did not corroborate our first hypothesis, while only partially corroborating the second one. As expected, macroalgae was one of the main assimilated basal food sources (especially by omnivore and zooplanktivore fishes) at the site where this primary producer was highly abundant. In contrast, only negligible amounts of mangrove-derived nutrients were assimilated by most trophic fish guilds at the site harboring an extensive mangrove area. Bayesian mixing models also revealed a substantial contribution of seagrass to herbivore and detritivore fishes. Some mechanisms like water divergence diminishing organic matter transport into the bay and the refractory characteristics of mangrove-derived detritus could partially explain these findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abrantes, K.G., A. Barnett, and S. Bouillon. 2014. Stable isotope-based community metrics as a tool to identify patterns in food web structure in east African estuaries. Functional Ecology 281: 270–282.

    Article  Google Scholar 

  • Alongi, D.M. 1987. The influence of mangrove-derived tannins on intertidal meiobenthos in tropical estuaries. Oecologia 714: 537–540.

    Article  Google Scholar 

  • Araújo, M.F. 1984. Morfologia, Composição, Sedimentologia e História Evolutiva do Recife de Coral da Ilha de Itaparica, Bahia. In Master thesis. Bahia: Universidade Federal da.

    Google Scholar 

  • Barros, F., P.C. Costa, I. Cruz, D.L.S. Mariano, and R.J. Miranda. 2012. Habitats Bentônicos na Baía de Todos os Santos. Revista Virtual de Quimica 4 (5): 551–565.

    CAS  Google Scholar 

  • Bartels, P., J. Cucherousset, K. Steger, P. Eklöv, L.J. Tranvik, and H. Hillebrand. 2012. Reciprocal subsidies between freshwater and terrestrial ecosystems structure consumer resource dynamics. Ecology 935: 1173–1182.

    Article  Google Scholar 

  • Bastos, R.F., F. Corrêa, K.O. Winemiller, and A.M. Garcia. 2017. Are you what you eat? Effects of trophic discrimination factors on estimates of food assimilation and trophic position with a new estimation method. Ecological Indicators 75: 234–241.

    Article  Google Scholar 

  • Baxter, C.V., K.D. Fausch, and W. Carl Saunders. 2005. Tangled webs: Reciprocal flows of invertebrate prey link streams and riparian zones. Freshwater Biology 502: 201–220.

    Article  Google Scholar 

  • Bivand, R.S., E. Pebesma, and V. Gomez-Rubio. 2013. Applied spatial data analysis with R. 2nd ed. New York: Springer http://www.asdarbook. Org/. Access 5 April 2019.

    Book  Google Scholar 

  • Botto, F., I. Valiela, O. Iribarne, P. Martinetto, and J. Alberti. 2005. Impact of burrowing crabs on C and N sources, control, and transformations in sediments and food webs of SW Atlantic estuaries. Marine Ecology Progress Series 293: 155–164.

    Article  Google Scholar 

  • Buschmann, A.H. 1990. Intertidal macroalgae as refuge and food for Amphipoda in Central Chile. Aquatic Botany 363: 237–245.

    Article  Google Scholar 

  • Camerano, L. 1880. Dell’ equilibrio dei viventi mercè la reciproca distruzione. Atti della Reale Accademia delle Scienze di Torino 15: 393–414.

    Google Scholar 

  • Campos, D.M.D.A.R., A.F.D. Silva, N.D.S. Sales, R.E.M.C.C. Oliveira, and A.L.M. Pessanha. 2015. Trophic relationships among fish assemblages in a mudflat within Brazilian marine protected area. Brazilian Journal of Oceanography 632: 135–146.

    Article  Google Scholar 

  • Carvalho, K.S., S. Wang, and S. 2019. Characterizing the Indian Ocean sea level changes and potential coastal flooding impacts under global warming. Journal of Hydrology 569: 373–386.

    Article  Google Scholar 

  • Cirano, M., and G.C. Lessa. 2007. Oceanographic characteristics of Baía de Todos os Santos, Brazil. Revista Brasileira de Geofísica 254: 363–387.

    Article  Google Scholar 

  • Claudino, M.C., P.C. Abreu, and A.M. Garcia. 2013. Stable isotopes reveal temporal and between-habitat changes in trophic pathways in a southwestern Atlantic estuary. Marine Ecology Progress Series 489: 29–42.

    Article  CAS  Google Scholar 

  • Claudino, M.C., A.L.M. Pessanha, F.G. Araújo, and A.M. Garcia. 2015. Trophic connectivity and basal food sources sustaining tropical aquatic consumers along a mangrove to ocean gradient. Estuarine, Coastal and Shelf Science 167: 45–55.

    Article  Google Scholar 

  • Colombrini, I., and L. Chelazzi. 2003. Influence of marine allochthonous input on sandy beach communities. Oceanography and Marine Biology: An Annual Review 41: 115–159.

    Google Scholar 

  • Condini, M.V., D.J. Hoeinghaus, and A.M. Garcia. 2015. Trophic ecology of dusky grouper Epinephelus marginatus Actinopterygii, Epinephelidae in littoral and neritic habitats of southern Brazil as elucidated by stomach contents and stable isotope analyses. Hydrobiologia 7431: 109–125.

    Article  Google Scholar 

  • Costa, C.S.B. 1998. Production ecology of Scirpus maritimus in southern Brazil. Ciência e Cultura 50: 273–280.

    Google Scholar 

  • Créach, V., M.T. Schricke, G. Bertru, and A. Mariotti. 1997. Stable isotopes and gut analyses to determine feeding relationships in saltmarsh macroconsumers. Estuarine, Coastal and Shelf Science 44: 599–611.

    Article  Google Scholar 

  • Day, J.W., B.C. Crump, W.M. Kemp, and A. Yáñez-Arancibia. 2012. Estuarine ecology. 2nd ed. Hoboken: Wiley-Blackwell.

    Book  Google Scholar 

  • Deegan, L.A., and R.H. Garritt. 1997. Evidence for spatial variability in estuarine food webs. Marine Ecology Progress Series 147: 31–47.

    Article  Google Scholar 

  • DeNiro, M.J., and S. Epstein. 1977. Mechanism of carbon isotope fractionation associated with lipid synthesis. Science 197 (4300): 261–263.

    Article  CAS  Google Scholar 

  • Dugan, J.E., D.M. Hubbard, M.D. Mccrary, and M.O. Pierson. 2003. 2003. The response of macrofauna communities and shorebirds to macrophyte wrack subsidies on exposed sandy beaches of southern California. Estuarine, Coastal and Shelf Science 58: 25–40.

    Article  Google Scholar 

  • Elliott, M., A.K. Whitfield, I.C. Potter, S.J.M. Blaber, D.P. Cyrus, F.G. Nordlie, and T.D. Harrison. 2007. The guild approach to categorizing estuarine fish assemblages: A global review. Fish and Fisheries 8: 241–268.

    Article  Google Scholar 

  • Elton, C. 1927. Animal Ecology. London: Sidgwick and Jackson.

    Google Scholar 

  • Falcão, B.A. 2012. Isótopos estáveis e multi-elementos dos sedimentos intermareal da Baía de Todos os Santos, Bahia, Brasil. In Master thesis, 55. Bahia: Universidade Federal da.

    Google Scholar 

  • Feitosa, C.V., L.D.C.T. Chaves, B.P. Ferreira, and M.E. Araújo. 2012. Recreational fish feeding inside Brazilian MPAs: Impacts on reef fish community structure. Journal of the Marine Biological Association of the United Kingdom 927: 1525–1533.

    Article  Google Scholar 

  • Feng, J.X., Q.F. Gao, S.L. Dong, Z.L. Sun, and K. Zhang. 2014. Trophic relationships in a polyculture pond based on carbon and nitrogen stable isotope analyses: A case study in Jinghai Bay, China. Aquaculture 428: 258–264.

    Article  CAS  Google Scholar 

  • Ferreira Júnior, O. 2012. GPS TrackMakerPRO Version 4.9.603 Geo Studio Technology.

  • Ferreira, A.C., G. Ganade, F.A.M. Freire, and J.L. Attayde. 2013. Propagule predation in a Neotropical mangrove: The role of the Grapsid crab Goniopsis cruentata. Hydrobiologia 7071: 135–146.

    Article  Google Scholar 

  • Fry, B. 2006. Stable isotope ecology. New York: Springer.

    Book  Google Scholar 

  • Garcia, A.M., D.J. Hoeinghaus, J.P. Vieira, and K.O. Winemiller. 2007. Isotopic variation of fishes in freshwater and estuarine zones of a large subtropical coastal lagoon. Estuarine, Coastal and Shelf Science 73: 399–408.

    Article  Google Scholar 

  • Garcia, A.M., M.C. Claudino, R. Mont’Alverne, P.E.R. Pereyra, M. Copertino, and J.P. Vieira. 2016. Temporal variability in assimilation of basal food sources by an omnivorous fish at Patos lagoon estuary revealed by stable isotopes 2010–2014. Marine Biology Research 131: 98–107.

    Google Scholar 

  • Garcia, A.M., K.O. Winemiller, D.J. Hoeinghaus, M.C. Claudino, R.F. Bastos, F. Correa, S. Huckembeck, J.P. Vieira, D. Loebmann, P.C. Abreu, and C. Ducatti. 2017. Hydrologic pulsing promotes spatial connectivity and food web subsidies in a subtropical coastal ecosystem. Marine Ecology Progress Series 567: 17–28.

    Article  CAS  Google Scholar 

  • Garcia, A.F.S., A.M. Garcia, S.R. Vollrath, F. Schneck, C.F.M. Silva, Í.J. Marchetti, and J.P. Vieira. 2018. Spatial diet overlap and food resource in two congeneric mullet species revealed by stable isotopes and stomach content analyses. Community Ecology 192: 116–124.

    Article  Google Scholar 

  • Garcia, A.F.S., S. Pasquaud, H. Cabral, A.M. Garcia, M.L. Santos, and J.P. Vieira. 2019a. Assimilation of allochthonous matter by estuarine consumers during the 2015 El Niño event. Estuaries and Coasts 425: 1281–1296.

    Article  CAS  Google Scholar 

  • Garcia, A.F.S., M.L. Santos, A.M. Garcia, and J.P. Vieira. 2019b. Changes in food web structure of fish assemblages along a river-to-ocean transect of a coastal subtropical system. Marine and Freshwater Research 703: 402–416.

    Article  Google Scholar 

  • Garcia, A.M., M.C.L.M. Oliveira, C. Odebrecht, L.A. Colling, J.P. Vieira, F.L. Rodrigues, and R.F. Bastos. 2019c. Allochthonous versus autochthonous organic matter sustaining macroconsumers in a subtropical sandy beach revealed by stable isotopes. Marine Biology Research doi. https://doi.org/10.1080/17451000.2019.1627559.

  • Glibert, P.M., J.J. Middelburg, J.W. McClelland, and M. Jake Vander Zanden. 2019. Stable isotope tracers: Enriching our perspectives and questions on sources, fates, rates, and pathways of major elements in aquatic systems. Limnology and Oceanography 64 (3): 950–981.

    Article  CAS  Google Scholar 

  • Harrigan, P., J.C. Zieman, and S.A. Macko. 1989. The base of nutritional support for the gray snapper Lutjanus griseus: An evaluation based on a combined stomach content and stable isotope analysis. Bulletin of Marine Science 441: 65–77.

    Google Scholar 

  • Helfman, G., B.B. Collette, D.E. Facey, and B.W. Bowen. 2009. The diversity of fishes: Biology, evolution, and ecology. Wiley.

  • Hoeinghaus, D.J., J.P. Vieira, C.S. Costa, C.E. Bemvenuti, K.O. Winemiller, and A.M. Garcia. 2011. Estuary hydrogeomorphology affects carbon sources supporting aquatic consumers within and among ecological guilds. Hydrobiologia 673: 79–92.

    Article  CAS  Google Scholar 

  • Hussey, N.E., M.A. MacNeil, B.C. McMeans, J.A. Olin, S.F. Dudley, G. Cliff, S.P. Wintner, S.T. Fennessy, and A.T. Fisk. 2014. Rescaling the trophic structure of marine food webs. Ecology Letters 17 (2): 239–250.

    Article  Google Scholar 

  • Ince, R., G.A. Hyndes, P.S. Lavery, and M.A. Vanderklift. 2007. Marine macrophytes directly enhance abundances of sandy beach fauna through provision of food and habitat. Estuarine, Coastal and Shelf Science 74: 77–86.

    Article  Google Scholar 

  • Jackson, A.L., R. Inger, A.C. Parnell, and S. Bearhop. 2011. Comparing isotopic niche widths among and within communities: SIBER–stable isotope Bayesian ellipses in R. Journal of Animal Ecology 80: 595–602.

    Article  Google Scholar 

  • Kang, C., E.J. Choy, S. Paik, H.L. Park, K. Lee, and S. An. 2007. Contributions of primary organic matter sources to macro-invertebrate production in an intertidal salt marsh (Scirpus triqueter) ecosystem. Marine Ecology Progress Series 334: 131–143.

    Article  CAS  Google Scholar 

  • Kennish, M. J. 1990. Ecology of estuaries. Volume II: Biological aspects. CRC Press, Inc., Boca Raton, Florida.

  • Kirkman, H., and G.A. Kendrick. 1997. Ecological significance and commercial harvesting of drifting and beachcast macroalgae and seagrasses in Australia: A review. Journal of Applied Phycology 9: 311–326.

    Article  Google Scholar 

  • Layman, C.A., M.S. Araujo, R. Boucek, E. Harrison, Z.R. Jud, P. Matich, C.M. Hammerschlag-Peyer, A.E. Rosenblatt, J.J. Vaudo, L.A. Yeager, D. Post, and S. Bearhop. 2012. Applying stable isotopes to examine food- web 490 structure: An overview of analytical tools. Biological Reviews 87: 545–562.

    Article  Google Scholar 

  • Lebreton, B., P. Richard, R. Galois, G. Radenac, C. Pfléger, G. Guillou, F. Mornet, and G.F. Blanchard. 2011. Trophic importance of diatoms in an intertidal Zostera noltii seagrass bed: Evidence from stable isotope and fatty acid analyses. Estuarine, Coastal and Shelf Science 921: 140–153.

    Article  CAS  Google Scholar 

  • Lee, S.Y. 1999. Tropical mangrove ecology: Physical and biotic factors influencing ecosystem structure and function. Australian Journal of Ecology 244: 355–366.

    Article  Google Scholar 

  • Lessa, G.C., A.C.S.P. Bittencourt, A. Brichta, and J.M.L. Dominguez. 2000. A reevaluation of the late quaternary sedimentation in Todos os Santos Bay (BA), Brazil. Anais da Academia Brasileira de Ciências 72 (4): 573–590.

    Article  Google Scholar 

  • Lessa, G.C., J.M.L. Dominguez, A.C.S.P. Bittencourt, and A. Brichta. 2001. The tides and tidal circulation of Todos os Santos Bay, Northeast Brazil: A general characterization. Anais da Academia Brasileira de Ciências 73 (2): 245–261.

    Article  Google Scholar 

  • Lessa, G.C., M. Cirano, F. Genz, C.A.S. Tanajura, and R.R. Silva. 2009. Oceanografia física. In Baía de Todos os Santos Aspectos oceanográficos Salvador, eds V. Hatje and J. B. Andrade, 69–119. Brasil-EDUFBA.

  • Lessa, G. C., M.F.L. Landim, P.O. Souza Mafalda-Junior, D.F. Gomes, C.S. Souza, C.E.T. Teixeira, J.R.B. Souza, and M.R. Zucchi. 2018. Variabilidade intra-anual da oceanografia da Baía de Todos os Santos evidências de três anos de monitoramento. In: Baía de Todos os Santos: avanços nos estudos de longo prazo, eds. V. Hatje, L. M. V. Dantas, B. Jailson, and J. B. Andrade, 231–292. Brasil-EDUFBA

  • Lima, R.G., and K.D. Colpo. 2014. Leaf-litter decomposition of the mangrove species Avicennia schaueriana, Laguncularia racemosa and Rhizophora mangle. Journal of the Marine Biological Association of the United Kingdom 94: 233–239.

    Article  Google Scholar 

  • Lima-Gomes, R.C., V.J. Cobo, and A. Fransozo. 2011. Feeding behaviour and ecosystem role of the red mangrove crab Goniopsis cruentata Latreille, 1803 Decapoda, Grapsoidea in a subtropical estuary on the Brazilian coast. Crustaceana: 735–747.

  • Loneragan, N.R., S.E. Bunn, and D.M. Kellaway. 1997. Are mangroves and seagrasses sources of organic carbon for penaeid prawns in a tropical Australian estuary? A multiple stable-isotope study. Marine Biology 130: 289–300.

    Article  Google Scholar 

  • McCutchan, J.H., Jr., W.M. Lewis Jr., C. Kendall, and C.C. McGrath. 2003. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102 (2): 378–390.

    Article  CAS  Google Scholar 

  • McLean, R.F., A. Tsyban, V. Burkett, J.O. Codignott, D.L. Forbes, N. Mimura, R.J. Beamish, and V. Ittekkot. 2001. Coastal zones and marine ecosystems. In Climate change 2001: Impacts, adaptation, and vulnerability. Contribution of working group II to the third assessment report of the intergovernmental panel on climate change, ed. J.J. McCarthy, O.F. Canziani, N.A. Leary, D.J. Dokken, and K.S. White, 343–379. Cambridge: Cambridge University Press.

    Google Scholar 

  • Medeiros, A.P.M.D., J.H.D.A. Xavier, and I.M.D.L. Rosa. 2017. Diet and trophic organization of the fish assemblage from the Mamanguape River estuary, Brazil. Latin American Journal of Aquatic Research 455: 879–890.

    Google Scholar 

  • Mellbrand, K., P.S. Lavery, G. Hyndes, and P.A. Hambäck. 2011. Linking land and sea: Different pathways for marine subsidies. Ecosystems 145: 732–744.

    Article  CAS  Google Scholar 

  • Moncreiff, C.A., and M.J. Sullivan. 2001. Trophic importance of epiphytic algae in subtropical seagrass beds: Evidence from multiple stable isotope analyses. Marine Ecology Progress Series 215: 93–106.

    Article  CAS  Google Scholar 

  • Mont’Alverne, R., T.D. Jardine, P.E.R. Pereyra, M.C.L.O. Oliveira, R.S. Medeiros, L.A. Sampaio, M.B. Tesser, and A.M. Garcia. 2016. Elemental turnover rates and isotopic discrimination in a euryhaline fish reared under different salinities: Implications for movement studies. Journal of Experimental Marine Biology and Ecology 480: 36–44.

    Article  CAS  Google Scholar 

  • Moore, J.C., P.C. de Ruiter, K.S. McCann, and V. Wolters. 2017. Adaptive food webs: Stability and transitions of real and model ecosystems. Cambridge University Press.

  • Moss, B. 2017. Marine reptiles, birds and mammals and nutrient transfers among the seas and the land: An appraisal of current knowledge. Journal of Experimental Marine Biology and Ecology 492: 63–80.

    Article  Google Scholar 

  • Newsome, S.D., R.C. Martinez, S. Bearhop, and D.L. Phillips. 2007. A niche for isotopic ecology. Frontiers in Ecology and the Environment 5: 429–436.

    Article  Google Scholar 

  • Oliveira, M.C.L.M., R.F. Bastos, M.C. Claudino, C.M. Assumpção, and A.M. Garcia. 2014. Transport of marine-derived nutrients to subtropical freshwater food webs by juvenile mullets: A case study in southern Brazil. Aquatic Biology 20: 91–100.

    Article  Google Scholar 

  • Parnell, A., D.L. Phillips, S. Bearhop, B.X. Semmens, E.J. Ward, J.W. Moore, A.L. Jackson, J. Grey, D.J. Kelly, and R. Inger. 2013. Bayesian stable isotope mixing models. Environmetrics 24: 387–399.

    Google Scholar 

  • Pebesma, E. J., and R. S. Bivand. 2005. Classes and methods for spatial data in R. R News 5 2. https://cran.r-project.org/doc/Rnews/. Accessed 04 May 2019.

  • Peterson, B.J., and B. Fry. 1987. Stable isotopes in ecosystem studies. Annual Review of Ecology, Evolution, and Systematics 18: 293–320.

    Article  Google Scholar 

  • Phillips, D.L., R. Inger, S. Bearhop, A.L. Jackson, J.W. Moore, A.C. Parnell, B.X. Semmens, and E.J. Ward. 2014. Best practices for use of stable isotope mixing models in food-web studies. Canadian Journal of Zoology 92: 823–835.

    Article  Google Scholar 

  • Polis, G.A., W.B. Anderson, and R.D. Holt. 1997. Toward an integration of landscape ecology and food web ecology: The dynamics of spatially subsidized food webs. Annual Review of Ecology, Evolution, and Systematics 28: 289–316.

    Article  Google Scholar 

  • Post, D.M. 2002. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology 83: 703–718.

    Article  Google Scholar 

  • Post, D.M., C.A. Layman, D.A. Arrington, G. Takimoto, J. Quattrochi, and C.G. Montaña. 2007. Getting to the fat of the matter: Models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152 (1): 179–189.

    Article  Google Scholar 

  • R Core Team. 2019. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. https://www.Rproject.org.

  • Rodríguez-Graña, L., D. Calliari, D. Conde, J. Sellanes, and R. Urrutia. 2008. Food web of a SW Atlantic shallow coastal lagoon: Spatial environmental variability does not impose substantial changes in the trophic structure. Marine Ecology Progress Series 362: 69–83.

    Article  CAS  Google Scholar 

  • Rowlingson B, Diggle P. 2017. Splancs: Spatial and space-time point pattern analysis. R package version 2.01–40.

  • Santos, G.N., O.S. Nascimento, F.A. Pedreira, G.I. Rios, J.N. Vasconcelos, and J.M.C. Nunes. 2013. Análise quali-quantitativa das algas arribadas do Norte do estado da Bahia, Brasil. Acta Botanica Malacitana 38: 13–24.

    Article  Google Scholar 

  • Savage, C., S.F. Thrush, A.M. Lohrer, and J.E. Hewitt. 2012. Ecosystem services transcend boundaries: Estuaries provide resource subsidies and influence functional diversity in coastal benthic communities. PLoS One 78: e42708.

    Article  CAS  Google Scholar 

  • Semmens, B.X., E.J. Ward, J.W. Moore, and C.T. Darimont. 2009. Quantifying inter-and intra-population niche variability using hierarchical Bayesian stable isotope mixing models. PLoS One 47: e6187.

    Article  CAS  Google Scholar 

  • Smith, J.A., D. Mazumder, I.M. Suthers, and M.D. Taylor. 2013. To fit or not to fit: Evaluating stable isotope mixing models using simulated mixing polygons. Methods in Ecology and Evolution 47: 612–618.

    Article  Google Scholar 

  • Souza, J.R.B., M. do Rosário Zucchi, A.B. Costa, A.E.G. de Azevedo, and S. Spano. 2017. Geochemical markers of sedimentary organic matter in Todos os Santos Bay, Bahia–Brazil. Indicators of sources and preservation. Marine Pollution Bulletin 1192: 239–246.

    Article  CAS  Google Scholar 

  • Stapp, P., and G.A. Polis. 2003. Marine resources subsidize insular rodent populations in the Gulf of California, Mexico. Oecologia 1344: 496–504.

    Article  Google Scholar 

  • Stock, B.C., and B.X. Semmens, 2016. MixSIAR GUI User Manual. Version 3.1. https://doi.org/10.5281/zenodo.47719.

  • Stribling, J.M., and J.C. Cornwell. 1997. Identification of important primary producers in a Chesapeake Bay tidal creek system using stable isotopes of carbon and sulfur. Estuaries 20: 77–85.

    Article  CAS  Google Scholar 

  • Tieszen, L.L., T.W. Boutton, K.G. Tesdahl, and N.A. Slade. 1983. Fractionation and turnover of stable carbon isotopes in animal tissues: Implications for 13C analysis of diet. Oecologia 57 (1-2): 32–37.

    Article  CAS  Google Scholar 

  • Vasconcelos-Filho, A.L., S. Neumann-Leitão, E. Eskenaqzi-Lessa, and A.M.S. De Oliveira. 2009. Hábitos alimentares de consumidores primários da ictiofauna do sistema estuarino de Itamaracá (Pernambuco-Brasil). Revista Brasileira de Engenharia de Pesca 4 (1): 21–31.

    Google Scholar 

  • Vizzini, S., G. Sara, R.H. Michener, and A. Mazzola. 2002. The role and contribution of the seagrass Posidonia oceanica L. Delile organic matter for secondary consumers as revealed by carbon and nitrogen stable isotope analysis. Acta Oecologica 234: 277–285.

    Article  Google Scholar 

  • Vörösmarty, C.J., P.B. McIntyre, M.O. Gessner, D. Dudgeon, A. Prusevich, P. Green, and P.M. Davies. 2010. Global threats to human water security and river biodiversity. Nature 467 (7315): 555–561.

    Article  CAS  Google Scholar 

  • Winemiller, K.O., and C.A. Layman. 2005. Food web science: Moving on the path from abstraction to prediction. In Dynamic food webs: multispecies assemblages, ecosystem development and environmental change, ed. P.C. Ruiter, V. Wolters, and J.C. Moore . Amsterdam: Elsevier.10-23. 1°

    Google Scholar 

  • Wright, L.D., and A.D. Short. 1984. Morphodynamic variability of surf zones and beaches: A synthesis. Marine Geology 561 (4): 93–118.

    Article  Google Scholar 

  • Zanden, M.J.V., and J.B. Rasmussen. 2001. Variation in δ15N and δ13C trophic fractionation: Implications for aquatic food web studies. Limnology and Oceanography 46 (8): 2061–2066.

    Article  Google Scholar 

  • Zhang, F., and M. Li. 2019. Impacts of ocean warming, sea level rise, and coastline management on storm surge in a semienclosed bay. Journal of Geophysical Research, Oceans 124 (9): 6498–6514.

    Article  Google Scholar 

Download references

Acknowledgments

EPS thanks CAPES for the doctorate scholarship and the staff of the ichthyology laboratories of UEFS and UFRB and Marlucy Claudino of FURG for their assistance with field and laboratory works.

Funding

Financial support for field sampling, sample processing, and stable isotope analysis is provided by the Fundação de Amparo à Pesquisa do Estado da Bahia (FAPESB), PET0030/2012. MVC is supported by the “Coordenação de Aperfeiçoamento de Pessoal de Nível Superior” (CAPES - 88882.31316871/2019-01). Research fellowship is provided by CNPq (310141/2015-0) to AMG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Vinicius Condini.

Additional information

Communicated by Henrique Cabral

Electronic Supplementary Material

ESM 1

(JPG 1678 kb)

ESM 2

(JPG 253 kb)

ESM 3

(XLSX 12 kb)

ESM 4

(XLSX 20 kb)

ESM 5

(XLSX 10 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, E.P., Condini, M.V., Santos, A.C.A. et al. Spatio-Temporal Changes in Basal Food Source Assimilation by Fish Assemblages in a Large Tropical Bay in the SW Atlantic Ocean. Estuaries and Coasts 43, 894–908 (2020). https://doi.org/10.1007/s12237-020-00716-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-020-00716-1

Keywords

Navigation