Skip to main content

Advertisement

Log in

A Mini-Review of the Contribution of Benthic Microalgae to the Ecology of the Continental Shelf in the South Atlantic Bight

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Benthic microalgae (BMA) inhabit the upper few centimeters of shelf sediments. This review summarizes the current information on BMA communities in the South Atlantic Bight (SAB) region of the Southeastern US continental shelf to provide insights into the potential role of these communities in the trophodynamics and biogeochemical cycling in shelf waters. Benthic irradiance is generally 2–6% of surface irradiance in the SAB region, providing sufficient light to support BMA primary production over 80–90% of the shelf width. BMA biomass greatly exceeds that of integrated phytoplankton biomass in the overlying water column on an areal basis. The SAB appears to have lower BMA biomass, but higher production than most temperate continental shelves. Annual production estimates average 101 and 89 g C m−2 year−1 for 5–20 and > 20 depth intervals, respectively. However, high variation in rates and biomass in time and space make comparisons between studies difficult. Submarine groundwater discharge (SGD) rather than the water column or in situ N regeneration from organic matter maybe the major “new” N source for BMA. The estimated supply of N (1.2 mmol N m−2 day−1) by SGD closely approximates the rates needed to support BMA primary production (3.1 to 1.6 mmol N m−2 day−1) in the sediments of the SAB. Identifying the source(s) of fixed N supporting the BMA community is essential for understanding the carbon dynamics and net ecosystem metabolism within the large area (76,000 km2) of the continental shelf in the SAB as well other temperate shelves worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Admiraal, W. 1984. The ecology of estuarine sediment-inhabiting diatoms. Progress in Phycological Research 3: 269–322.

    Google Scholar 

  • Archer, D., and A. Devol. 1992. Benthic oxygen fluxes on the Washington shelf and slope: A comparison of in situ microelectrode and chamber flux measurements. Limnology and Oceanography 37 (3): 614–629.

    Article  CAS  Google Scholar 

  • Atkinson, L.P., D.W. Menzel, and K.A. Bush. 1985. Oceanography of the southeastern U.S. continental shelf. In Coastal estuarine science series, Vol. 2, 156. Washington, D.C: AGU.

    Google Scholar 

  • Beretich, G.R. 1992. Comparisons of water-column and benthic chlorophylls on the eastern U.S. continental shelf. M.S. Thesis, University of North Carolina at Wilmington, Wilmington, NC, USA.

  • Berg, P., H. Roy, F. Janssen, V. Meyer, B.B. Jorgensen, M. Huettel, and D. de Beer. 2003. Oxygen uptake by aquatic sediments measured with a novel non-invasive eddy-correlation technique. Marine Ecology Progress Series 261: 75–83.

    Article  Google Scholar 

  • Berg, P., H. Roy, and P.L. Wiberg. 2007. Eddy correlation flux measurements: The sediment surface area that contributes to the flux. Limnology and Oceanography 52: 1672–1684.

    Article  Google Scholar 

  • Berg, P., D.J. Koopmans, M. Huettel, H. Li, K. Mori, and A. Wüest. 2016. A new robust oxygen-temperature sensor for aquatic eddy covariance measurements. Limnology and Oceanography Methods 14: 151–167.

    Article  CAS  Google Scholar 

  • Bishop, S.S., J.A. Yoder, and G.-A. Paffenhofer. 1980. Phytoplankton and nutrient variability along a cross-shelf transect off Savannah, Georgia, U.S.A. Estuarine, Coastal and Marine Science 11: 359–368.

    Article  Google Scholar 

  • Blair, N.E., L.A. Levin, D.J. DeMaster, and G. Plaia. 1996. The short-term fate of fresh algal carbon in continental slope sediments. Limnology and Oceanography 41: 1208–1219.

    Article  CAS  Google Scholar 

  • Blanton, J.O. 1981. Ocean currents along a nearshore frontal zone on the continental shelf of the southeastern United States. Journal of Physical Oceanography 11 (12): 1627–1637.

    Article  Google Scholar 

  • Blanton, B.O., F.E. Werner, H.E. Seim, R.A. Luettich Jr., D.R. Lynch, K.W. Smith, G. Voulgaris, F.M. Bingham, and F. Way. 2004. Barotopic tides in the South Atlantic Bight. Journal of Geophysical Research 109: 1–17.

    Article  Google Scholar 

  • Boudreau, B.P., and B.B. Jørgensen, eds. 2001. The benthic boundary layer: Transport processes and biogeochemistry. Oxford: Oxford Univ. Press.

    Google Scholar 

  • Burdige, D.J. 2006. Geochemistry of marine sediments. Princeton, NJ: Princeton Univ. Press.

    Google Scholar 

  • Burnett, W.C., P.K. Aggarwal, A. Aureli, H. Bokuniewicz, J.E. Cable, M. Charette, E. Kontar, S. Krupa, K.M. Kulkarni, A. Loveless, W.S. Moore, J. Oberdorfer, J. Oliveira, N. Ozyurt, P. Povinec, M.G. Privitera, R. Rajar, R.T. Ramessur, J. Scholten, T. Stieglitz, M. Taniguchi, and J.V. Turner. 2006. Quantifying submarine groundwater discharge in the coastal zone via multiple methods. Science of the Total Environment 367: 498–543.

    Article  CAS  Google Scholar 

  • Cahoon, L.B. 1999. The role of benthic microalgae in neritic ecosystems. Oceanography and Marine Biology Annual Review 37: 47–86.

    Google Scholar 

  • Cahoon, L.B., and J.E. Cooke. 1992. Benthic microalgal production in Onslow Bay, North Carolina, USA. Marine Ecology Progress Series 84: 185–196.

    Article  Google Scholar 

  • Cahoon, L.B., and R.A. Laws. 1993. Benthic diatoms from the North Carolina continental shelf: Inner and mid shelf. Journal of Phycology 29 (3): 257–263.

    Article  Google Scholar 

  • Cahoon, L.B., and C.R. Tronzo. 1990. New records of amphipods and cumaceans in demersal zooplankton collections from Onslow Bay, North Carolina. Journal of the Elisha Mitchell Scientific Society 106: 78–84.

    Google Scholar 

  • Cahoon, L.B., and C.R. Tronzo. 1992. Quantitative estimates of demersal zooplankton abundance in Onslow Bay, North Carolina, USA. Marine Ecology Progress Series 87: 197–200.

    Article  Google Scholar 

  • Cahoon, L.B., R.S. Redman, and C.R. Tronzo. 1990. Benthic microalgal biomass in sediments of Onslow Bay, North Carolina. Estuarine, Coastal and Shelf Science 31 (6): 805–816.

    Article  Google Scholar 

  • Cai, W.-J., Z.A. Wang, and Y. Wang. 2003. The role of marsh-dominated heterotrophic continental margins in transport of CO2 between the atmosphere, the land–sea interface and the ocean. Geophysical Research Letters 30: 1849–1859.

    Google Scholar 

  • Christianen, M., S. Holthuijsen JMiddelburg, J. Jouta, T. Compton, T. van der Heide, T. Piersma, J. Sinninghe Damsté, H. van der Veer, S. Schouten, and H. Olff. 2017. Benthic primary producers are key to sustain the Wadden Sea food web: Stable carbon isotope analysis at landscape scale. Ecology 98 (6): 1498–1512.

    Article  CAS  Google Scholar 

  • Darrow, B.P. 2008. Effects of nutrients from the water column on the growth of benthic microalgae in permeable sediments. Ph.D. Dissertation, University of South Florida.

  • Emery, K.O. 1968. Relict sediments on continental shelves of the World. American Association of Petrology and Geology Bulletin 52: 445–464.

    Google Scholar 

  • Fenchel, T., and B.J. Straarup. 1971. Vertical distribution of photosynthetic pigments and the penetration of light in marine sediments. Oikos 22: 172–182.

    Article  CAS  Google Scholar 

  • Gattuso, J.-P., B. Gentili, C.M. Duarte, J.A. Kleypas, J.J. Middleburg, and D. Antoine. 2006. Light availability in the coastal ocean: Impact on the distribution of benthic photosynthetic organisms and their contribution to primary production. Biogeosciences 3: 489–513.

    Article  Google Scholar 

  • Hillebrand, H., and U. Sommer. 2003. The nutrient stoichiometry of benthic microalgal growth: Redfield proportions are optimal. Limnology and Oceanography 44: 440–446.

    Article  Google Scholar 

  • Hopkinson, C.S. 1985. Shallow-water benthic and pelagic metabolism: Evidence of heterotrophy in the nearshore Georgia Bight. Marine Biology 87: 19–32.

    Article  Google Scholar 

  • Hopkinson, C.S., R.D. Fallon, B.-O. Jansson, and J.P. Schubauer. 1991. Community metabolism and nutrient cycling at Gray’s Reef, a hard bottom habitat in the Georgia Bight. Marine Ecology Progress Series 73: 105–120.

    Article  Google Scholar 

  • Huettel, M., P. Berg, and J.E. Kostka. 2014. Benthic exchange and biogeochemical cycling in permeable sediments. Annual Reviews in Marine Science 6: 23–51.

    Article  Google Scholar 

  • Jahnke, R.A., J.R. Nelson, R.L. Marinelli, and J.E. Eckman. 2000. Benthic flux of biogenic elements on the southeastern US continental shelf: Influence of pore water advective transport and benthic microalgae. Continental Shelf Research 20: 109–127.

    Article  Google Scholar 

  • Jahnke, R., M. Richards, J. Nelson, C. Robertson, A. Rao, and D. Jahnke. 2005. Organic matter remineralization and porewater exchange rates in permeable South Atlantic Bight continental shelf sediments. Continental Shelf Research 25: 1433–1452.

    Article  Google Scholar 

  • Kanaya, G., S. Takagi, and E. Kikuchi. 2008. Dietary contribution of the microphytobenthos to infaunal deposit feeders in an estuarine mudflat in Japan. Marine Biology 155: 543–553.

    Article  CAS  Google Scholar 

  • Kuhl, M., C. Lassen, and B.B. Jørgensen. 1994. Light penetration and light intensity in sandy marine sediments measured with irradiance and scalar irradiance fiber-optic microprobes. Marine Ecology Progress Series 105: 139–148.

    Article  Google Scholar 

  • Lee, T.N., and L.P. Atkinson. 1983. Low-frequency current and temperature variability from Gulf Stream frontal eddies and atmospheric forcing along the Southeast U.S. outer continental shelf. Journal of Geophysical Research 88 (C8): 4541–4567.

    Article  Google Scholar 

  • Lee, T.N., J.A. Yoder, and L.P. Atkinson. 1991. Gulf Stream frontal eddy influence on productivity of the southeast US continental shelf. Journal of Geophysical Research 96C: 22191–22205.

    Article  Google Scholar 

  • Liu, K.K., L. Atkinson, K. Quinones, and L. Talaue-McManus. 2010. Carbon and nutrient fluxes in continental margins: A global synthesis. Berlin: IGBP Book Series Springer.

    Book  Google Scholar 

  • MacIntyre, H., R. Geider, and D. Miller. 1996. Microphytobenthos: The ecological role of the “secret garden” of unvegetated, shallow-water marine habitats. I. Distribution, abundance, and primary production. Estuaries 19: 186–201.

    Article  Google Scholar 

  • Mallin, M.A., J.M. Burkholder, and M.J. Sullivan. 1992. Contributions of benthic microalgae to coastal fishery yield. Transactions of the American Fisheries Society 121: 691–695.

    Article  Google Scholar 

  • Marinelli, R.L. 1992. Effects of polychaetes on silicate dynamics and fluxes in sediments: Importance of species, animal activity, and polychaete effects on benthic diatoms. Journal of Marine Research 50: 745–779.

    Article  CAS  Google Scholar 

  • Marinelli, R.L., R.A. Jahnke, D.B. Craven, J.R. Nelson, and J.E. Eckman. 1998. Sediment nutrient dynamics on the South Atlantic Bight continental shelf. Limnology and Oceanography 43: 1305–1320.

    Article  Google Scholar 

  • Marshall, H.G. 1982. Phytoplankton distribution along the eastern coast of the USA IV. Shelf waters between Cape Lookout, North Carolina, and Cape Canaveral, Florida. Proceedings of the Biological Society of Washington 95: 99–113.

    Google Scholar 

  • Martins, A.M., and J.L. Pelegrí. 2006. CZCS chlorophyll patterns in the South Atlantic Bight during low vertical stratification conditions. Continental Shelf Research 26: 429–457.

    Article  Google Scholar 

  • McClain, C.R., J.A. Yoder, L.P. Atkinson, J.O. Blanton, T.N. Lee, J.J. Singer, and F. Muller-Karger. 1988. Variability of surface pigment concentrations in the South Atlantic Bight. Journal of Geophysical Research 93: 10675–10697.

    Article  Google Scholar 

  • McGee, D., .R.A. Laws, and L.B. Cahoon. 2008. Live benthic diatoms from the upper continental slope: Extending the limits of marine primary production. Marine Ecology Progress Series 356: 103–112.

    Article  Google Scholar 

  • Menzel, D.W. (Ed.). 1993. Ocean processes: US southeast continental shelf. US Department of Energy, Office of Energy Research, Office of Health and Environmental Research, Environmental Sciences Division (DE93010744), 112 pp.

  • Miller, D., R. Geider, and H. MacIntyre. 1996. Microphytobenthos: The ecological role of the “secret garden” of unvegetated, shallow-water marine habitats. II. Role in sediment stability and shallow-water food webs. Estuaries 19: 202–212.

    Article  Google Scholar 

  • Montani, S., P. Magni, and N. Abe. 2003. Seasonal and interannual patterns of intertidal microphytobenthos in combination with laboratory and areal production rates. Marine Ecology Progress Series 249: 79–91.

    Article  Google Scholar 

  • Moore, W.S. 1996. Large groundwater inputs to coastal waters revealed by 226Ra enrichments. Nature 380: 612–614.

    Article  CAS  Google Scholar 

  • Moore, W.S. 1999. The subterranean estuary: A reaction zone of ground water and sea water. Marine Chemistry 65: 111–125.

    Article  CAS  Google Scholar 

  • Moore, W.S. 2010a. The effect of submarine groundwater discharge on the ocean. Annual Review in Marine Science 2: 59–88.

    Article  Google Scholar 

  • Moore, W.S. 2010b. A reevaluation of submarine groundwater discharge along the southeastern coast of North America. Global Biogeochemical Cycles 24 (GB4005). https://doi.org/10.1029/2009GB003747.

    Article  Google Scholar 

  • Nelson, J.R., J.E. Eckman, C.Y. Robertson, R.L. Marinelli, and R.A. Jahnke. 1999. Benthic microalgal biomass and irradiance at the sea floor on the continental shelf of the South Atlantic Bight: Spatial and temporal variability and storm effects. Continental Shelf Research 19: 477–505.

    Article  Google Scholar 

  • Parker, R.O., D.R. Colby, and T.D. Willis. 1983. Estimated amount of reef habitat on a portion of the U.S. South Atlantic and Gulf of Mexico continental Shelf. Bulletin of Marine Science 33: 935–940.

    Google Scholar 

  • Pinckney, J.L., and R. Zingmark. 1993. Photophysiological responses of intertidal benthic microalgal communities to in situ light environments: Methodological considerations. Limnology and Oceanography 38: 1373–1383.

    Article  Google Scholar 

  • Pinckney, J.L., R. Papa, and R. Zingmark. 1994b. Comparison of high-performance liquid chromatographic, spectrophotometric, and fluorometric methods for determining chlorophyll a concentrations in estuarine sediments. Journal of Microbiological Methods 19: 59–66.

    Article  CAS  Google Scholar 

  • Ploug, H., C. Lassen, and B. Jorgensen. 1993. Action spectra of microalgal photosynthesis and depth distribution of spectral scalar irradiance in a coastal marine sediment of Limfjorden, Denmark. FEMS Microbiology Ecology 102: 261–270.

    Article  Google Scholar 

  • Rao, A.M.F., M.J. McCarthy, W.S. Gardner, and R.A. Jahnke. 2007. Respiration and denitrification in permeable continental shelf deposits on the South Atlantic Bight: Rates of carbon and nitrogen cycling from sediment column experiments. Continental Shelf Research 27: 1801–1809.

    Article  Google Scholar 

  • Rao, A.M.F., M.J. McCarthy, W.S. Gardner, and R.A. Jahnke. 2008. Respiration and denitrification in permeable continental shelf deposits on the South Atlantic Bight: N2:Ar and isotope pairing measurements in sediment column experiments. Continental Shelf Research 28: 602–613.

    Article  Google Scholar 

  • Savidge, D.K., J. Norman, C. Smith, J.A. Amft, T. Moore, C. Edwards, and G. Voulgaris. 2010. Shelf edge tide correlated eddies along the southeastern United States. Geophysical Research Letters. https://doi.org/10.1029/2010GL045236.

    Article  Google Scholar 

  • Smith, S.V., and J.T. Hollibaugh. 1993. Coastal metabolism and the oceanic organic carbon balance. Reviews in Geophysics 31: 75–89.

    Article  Google Scholar 

  • Sullivan, M., and C. Moncrieff. 1990. Edaphic algae are an important component of salt marsh food-webs: Evidence from multiple stable isotope analyses. Marine Ecology Progress Series 62: 149–159.

    Article  Google Scholar 

  • Sundbäck, K., F. Linares, F. Larson, and A. Wulff. 2004. Benthic nitrogen fluxes along a depth gradient in a microtidal fjord: The role of denitrification and microphytobenthos. Limnology and Oceanography 49: 1095–1107.

    Article  Google Scholar 

  • Taniguchi, M., W.C. Burnett, J.E. Cable, and J.V. Turner. 2002. Investigation of submarine groundwater discharge. Hydrological Processes 16: 2115–2129.

    Article  Google Scholar 

  • Tengberg, A., P.O.J. Hall, U. Anderson, B. Linden, O. Styrenius, and G. Boland. 2005. Intercalibration of benthic flux chambers II. Hydrodynamic characterization and flux comparisons of 14 different designs. Marine Chemistry 94: 147–173.

    Article  CAS  Google Scholar 

  • Tenore, K.R. 1985. Seasonal changes in soft bottom macrofauna of the U.S. South Atlantic Bight. In Oceanography of the Southeastern United States Continental Shelf, ed. L.P. Atkinson, D.W. Menzel, and K.A. Bush, 93–103. New York: American Geophysical Union.

    Google Scholar 

  • Uchupi, E. 1968. Atlantic continental shelf and slope of the United States—Physiography. In Geological survey professional paper 529C. Washington, D.C.: U.S. Department of the Interior, U.S. Government Printing Office.

    Google Scholar 

  • Underwood, G.J.C., and J. Kromkamp. 1999. Primary production by phytoplankton and microphytobenthos in estuaries. Advances in Ecological Research 29: 93–153.

    Article  CAS  Google Scholar 

  • Verity, P.G., J.A. Yoder, S.S. Bishop, J.R. Nelson, D.B. Craven, J.O. Blanton, C.Y. Robertson, and C.R. Tronzo. 1993. Composition, productivity and nutrient chemistry of a coastal ocean plankton food web. Continental Shelf Research 13: 741–776.

    Article  Google Scholar 

  • Warner, J.C., B. Armstrong, C.S. Sylvester, G. Voulgaris, T. Nelson, W.C. Schwab, and J.F. Denny. 2012. Storm-induced inner-continental shelf circulation and sediment transport: Long Bay, South Carolina. Continental Shelf Research 42: 51–63.

    Article  Google Scholar 

  • Wilson, A.M., M. Huettel, and S. Klein. 2008. Grain size and depositional environment as predictors of permeability in coastal marine sands. Estuarine, Coastal and Shelf Science 80: 193–199.

    Article  Google Scholar 

  • Wilson, A.M., G.L. Woodward, and W.B. Savidge. 2016. Using heat as a tracer to estimate the depth of rapid porewater advection below the sediment–water interface. Journal of Hydrology 538: 743–753.

    Article  Google Scholar 

  • Yoder, J.A., C.R. McClain, J.O. Blanton, and L.-Y. Oey. 1987. Spatial scales in CZCS-chlorophyll imagery of the southeastern U.S. continental shelf. Limnology and Oceanography 32: 929–941.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank Alicia Wilson and Susan Lang for valuable discussions on this topic and two anonymous reviewers for their extremely helpful comments. This is publication no. 1862 from the Belle W. Baruch Institute for Marine and Coastal Sciences.

Funding

Support for this review was provided by the National Science Foundation (grant # OCE 1736557).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James L. Pinckney.

Additional information

Communicated by Iris C. Anderson

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinckney, J.L. A Mini-Review of the Contribution of Benthic Microalgae to the Ecology of the Continental Shelf in the South Atlantic Bight. Estuaries and Coasts 41, 2070–2078 (2018). https://doi.org/10.1007/s12237-018-0401-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-018-0401-z

Keywords

Navigation