Skip to main content
Log in

Effect of Maternal Size, Reproductive Season and Interannual Variability in Offspring Provisioning of Carcinus maenas in a Coastal Lagoon

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Maternal effects and larval experience are considered the most important sources of variability in offspring phenotypes in marine invertebrates. Maternal provisioning during oogenesis is the first of a series of processes that will ultimately affect offspring phenotype and population dynamics. The keystone species of several European estuarine environments, Carcinus maenas, was used as a model to analyse the effect of female size and reproductive season on the fatty acid (FA) profile of newly extruded (stage 1) and ready-to-hatch (stage 3) embryos, as proxies for maternal investment and quality of newly hatched larvae, respectively. A total of 60 ovigerous females of two different sizes (carapace width [CW]: small CW <40 mm; large CW ≥40 mm) from Ria de Aveiro (Portugal) were sampled during three different reproductive periods: early reproductive season (ERS, late March/early April) 2012, ERS-2013 and late reproductive season (LRS; July) 2013. Maternal size was not a reliable indicator of maternal provision or larval quality at hatching. The interannual comparison (ERS-2012 vs. ERS-2013) revealed that the FA profile of stage 3 embryos was likely shaped by environmental conditions in the coastal lagoon during incubation. The seasonal comparison (ERS-2013 vs. LRS-2013) showed that embryos in the LRS had higher quality lipid content than embryos in the ERS, suggesting an increase of energetic reserves destined for reproduction in females in the LRS. Studies on maternal investment that overlook temporal variability should be interpreted with caution, especially in species inhabiting highly dynamic environments such as coastal lagoons and estuaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Álvarez, I., J.M. Dias, M. de Castro, N. Vaz, M.C. Sousa, and M. Gómez-Gesteira. 2013. Influence of upwelling events on the estuaries of the north-western coast of the Iberian Peninsula. Marine and Freshwater Research 64: 1123–1134. doi:10.1071/MF12298.

    Article  Google Scholar 

  • Andrés, M., A. Estévez, C.G. Simeó, and G. Rotllant. 2010. Annual variation in the biochemical composition of newly hatched larvae of Maja brachydactyla in captivity. Aquaculture 310: 99–105. doi:10.1016/j.aquaculture.2010.09.035.

    Article  Google Scholar 

  • Anger, K. 2001. The biology of decapod crustacean larvae. Crustacean issues, 14. Lisse: A.A. Balkema.

    Google Scholar 

  • AOCS. 2012. AOCS Lipid Library. American Oil Chemists’ Society. Available at http://lipidlibrary.aocs.org/. Accessed 14 Feb 2017.

  • Aued-Pimentel, S., J.H.G. Lago, M.H. Chaves, and E.E. Kumagai. 2004. Evaluation of a methylation procedure to determine cyclopropenoids fatty acids from Sterculia striata St. Hil. et Nauds seed oil. Journal of Chromatography A 1054: 235–239. doi:10.1016/j.chroma.2004.07.090.

    Article  CAS  Google Scholar 

  • Baeta, A., H.N. Cabral, J.M. Neto, J.C. Marques, and M.A. Pardal. 2005. Biology, population dynamics and secondary production of the green crab Carcinus maenas (L.) in a temperate estuary. Estuarine, Coastal and Shelf Science 65: 43–52. doi:10.1016/j.ecss.2005.05.004.

    Article  Google Scholar 

  • Baeta, A., H.N. Cabral, J.C. Marques, and M.A. Pardal. 2006. Feeding ecology of the green crab, Carcinus maenas (L., 1758) in a temperate estuary, Portugal. Crustaceana 79: 1181–1193.

    Article  Google Scholar 

  • Bartlett, M.E., and D.H. Lewis. 1970. Spectrophotometric determination of phosphate esters in the presence and absence of orthophosphate. Analytical Biochemestry 36: 159–167.

    Article  CAS  Google Scholar 

  • Bernardo, J. 1996. The particular maternal effect of propagule size, especially egg size: patterns, models, quality of evidence and interpretations. American Zoologist 36: 216–236.

    Article  Google Scholar 

  • Bligh, E.G., and W.J. Dyer. 1959. A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology 37: 911–917.

    Article  CAS  Google Scholar 

  • Burgess, S.C., and D.J. Marshall. 2011. Are numbers enough? Colonizer phenotype and abundance interact to affect population dynamics. Journal of Animal Ecology 80: 681–687. doi:10.1111/J.1365-2656.2010.01802.X.

    Article  Google Scholar 

  • Burgess, S.C., E.A. Treml, and D.J. Marshall. 2012. How do dispersal costs and habitat selection influence realized population connectivity? Ecology 93: 1378–1387. doi:10.1890/11-1656.1.

    Article  Google Scholar 

  • Cahu, C.L., G. Cuzon, and P. Quazuguel. 1995. Effect of highly unsaturated fatty acids, alpha-tocopherol and ascorbic acid in broodstock diet on egg composition and development of Penaeus indicus. Comparative Biochemistry and Physiology Part A: Physiology 112: 417–424.

    Article  Google Scholar 

  • Calado, R., and M.C. Leal. 2015. Trophic ecology of benthic marine invertebrates with bi-phasic life cycles: what are we still missing? Advances in Marine Biology 71: 1–70. doi:10.1016/bs.amb.2015.07.001.

    Article  Google Scholar 

  • Calado, R., T. Pimentel, D.F.R. Cleary, G. Dionísio, C. Nunes, T.L. da Silva, M.T. Dinis, and A. Reis. 2010. Providing a common diet to different marine decapods does not standardize the fatty acid profiles of their larvae: a warning sign for experimentation using invertebrate larvae produced in captivity. Marine Biology 157: 2427–2434. doi:10.1007/S00227-010-1507-4.

    Article  Google Scholar 

  • Calder, W.A. 1984. Size, function, and life history. Cambridge: Harvard University Press.

    Google Scholar 

  • Charmantier, G., L. Giménez, M. Charmantier-Daures, and K. Anger. 2002. Ontogeny of osmoregulation, physiological plasticity and larval export strategy in the grapsid crab Chasmagnathus granulata (Crustacea, Decapoda). Marine Ecology Progress Series 229: 185–194.

    Article  Google Scholar 

  • Clarke, K.R., and R.N. Gorley. 2006. PRIMER v6: user manual/tutorial. Plymouth: Primer-E Ltd..

    Google Scholar 

  • R Core Team. 2015. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

    Google Scholar 

  • Crothers, J. 1967. The biology of the shore crab Carcinus maenas (L.) 1. The background-anatomy, growth and life history. Field Studies 2: 407–434.

    Google Scholar 

  • Dawirs, R.R. 1985. Temperature and larval development of Carcinus maenas (Decapoda) in the laboratory; predictions of larval dynamics in the sea. Marine Ecology Progress Series 24: 297–302.

    Article  Google Scholar 

  • Domingues, C.P., M.J. Almeida, J. Dubert, R. Nolasco, N. Cordeiro, S. Waap, A. Sequeira, S. Tavares, and H. Queiroga. 2011. Supply of crab larvae to an estuary in the eastern Atlantic upwelling system exhibits predictable and haphazard variation at different temporal scales. Marine Ecology Progress Series 425: 113–124. doi:10.3354/Meps08992.

    Article  Google Scholar 

  • Fernández, M., C. Bock, and H.O. Pörtner. 2000. The cost of being a caring mother: the ignored factor in the reproduction of marine invertebrates. Ecology Letters 3: 487–494. doi:10.1111/j.1461-0248.2000.00172.x.

    Article  Google Scholar 

  • Fischer, S., S. Thatje, M. Graeve, K. Paschke, and G. Kattner. 2009. Bioenergetics of early life-history stages of the brachyuran crab Cancer setosus in response to changes in temperature. Journal of Experimental Marine Biology and Ecology 374: 160–166. doi:10.1016/j.jembe.2009.04.019.

    Article  Google Scholar 

  • Fischer, B., B. Taborsky, and H. Kokko. 2011. How to balance the offspring quality-quantity tradeoff when environmental cues are unreliable. Oikos 120: 258–270. doi:10.1111/J.1600-0706.2010.18642.X.

    Article  Google Scholar 

  • Giménez, L. 2006. Phenotypic links in complex life cycles: conclusions from studies with decapod crustaceans. Integrative and Comparative Biology 46: 615–622. doi:10.1093/Icb/Ic1010.

    Article  Google Scholar 

  • Giménez, L. 2010. Relationships between habitat conditions, larval traits, and juvenile performance in a marine invertebrate. Ecology 91: 1401–1413.

    Article  Google Scholar 

  • Giménez, L., and K. Anger. 2001. Relationships among salinity, egg size, embryonic development, and larval biomass in the estuarine crab Chasmagnathus granulata Dana, 1851. Journal of Experimental Marine Biology and Ecology 260: 241–257.

    Article  Google Scholar 

  • Goudeau, M. 1983. Structure of the egg funiculus and deposition of embryonic envelopes in a crab. Tissue and Cell 15: 47–62.

    Article  CAS  Google Scholar 

  • Green, B.S., C. Gardner, J.D. Hochmuth, and A. Linnane. 2014. Environmental effects on fished lobsters and crabs. Reviews in Fish Biology and Fisheries 24: 613–638. doi:10.1007/s11160-014-9350-1.

    Article  Google Scholar 

  • Guisande, C., and R. Harris. 1995. Effect of total organic content of eggs on hatching success and naupliar survival in the copepod Calanus helgolandicus. Limnology and Oceanography 40: 476–482. doi:10.4319/lo.1995.40.3.0476.

    Article  CAS  Google Scholar 

  • Harrison, K.E. 1990. The role of nutrition in maturation, reproduction and embryonic development of decapod crustaceans: a review. Journal of Shellfish Research 19: 1–28.

    Google Scholar 

  • Hartnoll, R.G. 2006. Reproductive investment in Brachyura. Hydrobiologia 557: 31–40. doi:10.1007/S10750-005-9305-6.

    Article  Google Scholar 

  • Herring, P.J. 1974. Size, density and lipid content of some decapod eggs. Deep Sea Research 21: 91–94.

    Google Scholar 

  • Hunt, J., L.F. Bussiere, M.D. Jennions, and R. Brooks. 2004. What is genetic quality? Trends in Ecology & Evolution 19: 329–333. doi:10.1016/J.Tree.2004.03.035.

    Article  Google Scholar 

  • Koopman, H.N., and Z.A. Siders. 2013. Variation in egg quality in blue crabs, Callinectes sapidus, from North Carolina: does female size matter? Journal of Crustacean Biology 33: 481–487. doi:10.1163/1937240X-00002152.

    Article  Google Scholar 

  • Leignel, V., J.H. Stillman, S. Baringou, R. Thabet, and I. Metais. 2014. Overview on the European green crab Carcinus spp. (Portunidae, Decapoda), one of the most famous marine invaders and ecotoxicological models. Environmental Science and Pollution Research 21: 9129–9144. doi:10.1007/s11356-014-2979-4.

    Article  CAS  Google Scholar 

  • Li, S., Y. Cheng, B. Zhou, and A.H. Hines. 2012. Changes in biochemical composition of newly spawned eggs, prehatching embryos and newly hatched larvae of the blue crab Callinectes sapidus. Journal of Shellfish Research 31: 941–946. doi:10.2983/035.031.0405.

    Article  Google Scholar 

  • Lyons, L.J., R.M.O. Riordan, T.F. Cross, and S.C. Culloty. 2012. Reproductive biology of the shore crab Carcinus maenas (Decapoda, Portunidae): a macroscopic and histological view. Invertebrate Reproduction & Development 56: 144–156.

    Article  Google Scholar 

  • Marshall, D.J., and S.G. Morgan. 2011. Ecological and evolutionary consequences of linked life-history stages in the sea. Current Biology 21: R718–R725. doi:10.1016/J.Cub.2011.08.022.

    Article  CAS  Google Scholar 

  • Marshall, D.J., R.M. Allen, and A.J. Crean. 2008. The ecological and evolutionary importance of maternal effects in the sea. Oceanography and Marine Biology: An Annual Review 46: 203–250.

    Google Scholar 

  • Marshall, D.J., S.S. Heppell, S.B. Munch, and R.R. Warner. 2010. The relationship between maternal phenotype and offspring quality: do older mothers really produce the best offspring? Ecology 91: 2862–2873.

    Article  Google Scholar 

  • McLeod, L., and D.J. Marshall. 2009. Do genetic diversity effects drive the benefits associated with multiple mating? A test in a marine invertebrate. PloS One 4: e6347. doi:10.1371/journal.pone.0006347.

    Article  Google Scholar 

  • Moland, E., E.M. Olsen, and N.C. Stenseth. 2010. Maternal influences on offspring size variation and viability in wild European lobster Homarus gammarus. Marine Ecology Progress Series 400: 165–173. doi:10.3354/meps08397.

    Article  Google Scholar 

  • Oliveira, P.B., R. Nolasco, J. Dubert, T. Moita, and A. Peliz. 2009. Surface temperature, chlorophyll and advection patterns during a summer upwelling event off central Portugal. Continental Shelf Research 29: 759–774. doi:10.1016/j.csr.2008.08.004.

    Article  Google Scholar 

  • Ouellet, P., and F. Plante. 2004. An investigation of the sources of variability in American lobster (Homarus americanus) eggs and larvae: female size and reproductive status, and interannual and interpopulation comparisons. Journal of Crustacean Biology 24: 481–495.

    Article  Google Scholar 

  • Pechenik, J.A. 2006. Larval experience and latent effects—metamorphosis is not a new beginning. Integrative and Comparative Biology 46: 323–333. doi:10.1093/Icb/Icj028.

    Article  Google Scholar 

  • Queiroga, H., J.D. Costlow, and M.H. Moreira. 1997. Vertical migration of the crab Carcinus maenas first zoea in an estuary: implications for tidal stream transport. Marine Ecology Progress Series 149: 121–132.

    Article  Google Scholar 

  • Racotta, I.S., E. Palacios, and A.M. Ibarra. 2003. Shrimp larval quality in relation to broodstock condition. Aquaculture 227: 107–130. doi:10.1016/S0044-8486(03)00498-8.

    Article  Google Scholar 

  • Ramirez Llodra, E. 2002. Fecundity and life-history strategies in marine invertebrates. Advances in Marine Biology 43: 87–170. doi:10.1016/S0065-2881(02)43004-0.

    Article  Google Scholar 

  • Rey, F., E. Alves, T. Melo, P. Domingues, H. Queiroga, R. Rosa, M.R.M. Domingues, and R. Calado. 2015. Unravelling polar lipids dynamics during embryonic development of two sympatric brachyuran crabs (Carcinus maenas and Necora puber) using lipidomics. Scientific Reports 5: 14549. doi:10.1038/srep14549.

    Article  CAS  Google Scholar 

  • Rey, F., A.S.P. Moreira, F. Ricardo, M.A. Coimbra, M.R.M. Domingues, P. Domingues, R. Rosa, H. Queiroga, and R. Calado. 2016. Fatty acids of densely packed embryos of Carcinus maenas reveal homogeneous maternal provisioning and no within-brood variation at hatching. Biological Bulletin 230: 120–129.

    Article  CAS  Google Scholar 

  • Rodrigues, M. 2012. Effects of the climatic factors and anthropogenic actions in the Ria de Aveiro. Aveiro: University of Aveiro.

    Google Scholar 

  • Rodrigues, M., A. Oliveira, H. Queiroga, and V. Brotas. 2012. Seasonal and diurnal water quality and ecological dynamics along a salinity gradient (Mira Channel, Aveiro Lagoon, Portugal). Procedia Environmental Sciences 13: 899–918. doi:10.1016/j.proenv.2012.01.084.

    Article  CAS  Google Scholar 

  • Rosa, R., S. Morais, R. Calado, L. Narciso, and M.L. Nunes. 2003. Biochemical changes during the embryonic development of Norway lobster, Nephrops norvegicus. Aquaculture 221: 507–522. doi:10.1016/S0044-8486(03)00117-0.

    Article  CAS  Google Scholar 

  • Rosa, R., R. Calado, A.M. Andrade, L. Narciso, and M.L. Nunes. 2005. Changes in amino acids and lipids during embryogenesis of European lobster, Homarus gammarus (Crustacea: Decapoda). Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology 140: 241–249. doi:10.1016/J.Cbpc.2004.10.009.

    Article  CAS  Google Scholar 

  • Rosa, R., R. Calado, L. Narciso, and M.L. Nunes. 2007. Embryogenesis of decapod crustaceans with different life history traits, feeding ecologies and habitats: a fatty acid approach. Marine Biology 151: 935–947. doi:10.1007/S00227-006-0535-6.

    Article  Google Scholar 

  • Rotllant, G., C.G. Simeó, G. Guerao, M. Sastre, D.F.R. Cleary, R. Calado, and A. Estévez. 2014. Interannual variability in the biochemical composition of newly hatched larvae of the spider crab Maja brachydactyla (Decapoda, Majidae). Marine Ecology 35: 298–307. doi:10.1111/maec.12081.

    Article  CAS  Google Scholar 

  • Sato, T., and N. Suzuki. 2010. Female size as a determinant of larval size, weight, and survival period in the coconut crab, Birgus latro. Journal of Crustacean Biology 30: 624–628. doi:10.1651/10-3279.1.

    Article  Google Scholar 

  • Shanks, A.L., B.A. Grantham, and M.H. Carr. 2003. Propagule dispersal distance and the size and spacing of marine reserves. Ecological Applications 13: S159–S169.

    Article  Google Scholar 

  • Smith, G.G., A.J. Ritar, D. Johnston, and G.A. Dunstan. 2004. Influence of diet on broodstock lipid and fatty acid composition and larval competency in the spiny lobster, Jasus edwardsii. Aquaculture 233: 451–475. doi:10.1016/j.aquaculture.2003.11.009.

    Article  CAS  Google Scholar 

  • Swiney, K.M., G.L. Eckert, and G.H. Kruse. 2013. Does maternal size affect red king crab, Paralithodes camtschaticus, embryo and larval quality? Journal of Crustacean Biology 33: 470–480. doi:10.1163/1937240X-00002162.

    Article  Google Scholar 

  • Torres, G., L. Giménez, and K. Anger. 2002. Effects of reduced salinity on the biochemical composition (lipid, protein) of zoea 1 decapod crustacean larvae. Journal of Experimental Marine Biology and Ecology 277: 43–60.

    Article  CAS  Google Scholar 

  • Verísimo, P., C. Bernárdez, E. González-Gurriarán, J. Freire, R. Muiño, and L. Fernández. 2011. Changes between consecutive broods in the fecundity of the spider crab, Maja brachydactyla. ICES Journal of Marine Science 68: 472–478. doi:10.1093/icesjms/fsq164.

    Article  Google Scholar 

  • Villegas-Ríos, D., X.A. Álvarez-Salgado, S. Piedracoba, G. Rosón, U. Labarta, and M.J. Fernández-Reiriz. 2011. Net ecosystem metabolism of a coastal embayment fertilised by upwelling and continental runoff. Continental Shelf Research 31: 400–413. doi:10.1016/j.csr.2010.07.010.

    Article  Google Scholar 

  • Walker, A., S. Ando, G.D. Smith, and R.F. Lee. 2006. The utilization of lipovitellin during blue crab (Callinectes sapidus) embryogenesis. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology 143: 201–208. doi:10.1016/j.cbpb.2005.11.015.

    Article  Google Scholar 

  • Yamada, S.B. 2001. Global invader: the European green crab. Corvallis: Oregon State University.

    Google Scholar 

Download references

Acknowledgements

Felisa Rey was supported by PhD scholarships (SFRH/BD/62594/2009) funded by the Fundação para a Ciência e Tecnologia (FCT) (QREN-POPH-Tipe 4.1 – Advanced training, subsidized by the European Social Fund and National Funds MEC). The present study was funded by FEDER through COMPETE, Programa Operacional Factores de Competitividade and by national funding through FCT, within the research project NO RESET PTDC/BIA-BIC/116871/2010. RR is supported by the Investigator FCT program (IF/01373/2013). The authors are thankful to project REDE/1504/REM/2005 (that concerns the Portuguese Mass Spectrometry Network) and to the QOPNA research unit (project PEst-493 C/QUI/UI0062/2013, FCOMP-01-0124-FEDER-037296).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Felisa Rey or Ricardo Calado.

Additional information

Communicated by Judy Grassle

Electronic Supplementary Material

ESM 1

(DOC 115 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rey, F., Domingues, M.R.M., Domingues, P. et al. Effect of Maternal Size, Reproductive Season and Interannual Variability in Offspring Provisioning of Carcinus maenas in a Coastal Lagoon. Estuaries and Coasts 40, 1732–1743 (2017). https://doi.org/10.1007/s12237-017-0235-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-017-0235-0

Keywords

Navigation