Estuaries and Coasts

, Volume 40, Issue 3, pp 792–806 | Cite as

Air–Water CO2 Fluxes and Net Ecosystem Production Changes in a Baja California Coastal Lagoon During the Anomalous North Pacific Warm Condition

  • Ma Carmen Ávila-López
  • J. Martín Hernández-Ayón
  • Víctor F. Camacho-Ibar
  • Armando Félix Bermúdez
  • Adan Mejía-Trejo
  • Isaí Pacheco-Ruiz
  • Jose M. Sandoval-Gil


The present study examines the temporal variability of air–water CO2 fluxes (FCO2) and seawater carbonate chemistry in a Baja California coastal lagoon during an exceptionally warm anomaly that was developed in Northeast Pacific coasts during 2014. This oceanographic condition led to a summer-like season (weak upwelling condition) during the study period, which reached a maximum surface temperature anomaly of 2 °C in September 2014. San Quintín Bay acts as a source of CO2 to the atmosphere in 2014 (3.3 ± 4.8 mmol C m−2 day−1) with the higher positive fluxes mainly observed in summer months (9.0 ± 5.3 mmol C m−2 day−1). Net ecosystem production (NEP) switched seasonally between net heterotrophy and net autotrophy during the study period, with an annual average of 2.2 ± 7.1 mmol C m−2 day−1, which indicates that San Quintín Bay was a net autotrophic system during the atypical warm oceanographic condition in 2014. This pattern of seasonal variations in the carbon balance at San Quintín Bay appears to be linked to the life cycle of benthic communities, which play an important role in the whole-ecosystem metabolism. Under the limited input from external sources coupled with an increase in seawater temperatures, the recycled benthic carbon and nutrient fluxes play a major role to sustain water-column processes within the bay. Since the upwelling condition may influence the magnitude of the air–water CO2 fluxes, our results clearly indicated that San Quintín Bay is a net source of carbon to the atmosphere regardless of the adjacent oceanic conditions. Our study sheds light on the carbon dynamics and its metabolic implications in a shallow coastal ecosystem under a regional warm anomaly and contributes potentially relevant information in view of the likely future scenario of global climate change.


Air–water CO2 fluxes Coastal upwelling Ecosystem metabolism Anomalous North Pacific warm condition Baja California 



The authors wish to thank SEP-CONACYT for the support given for this work through the UABC project Estudio Integral del Ciclo del Nitrógeno en Bahía Falsa, Baja California (ref. no. 10412). We thank the cooperation of the Nautilus hatchery workers from San Quintín for their support in the field, and we appreciate the significant assistance of Dulce Magali López, Nevia Alfaro, Julieta Hernández, and Erika Santacruz during the field sampling and the laboratory analysis and the comments that improved the manuscript. This paper was pleasantly improved and strengthened by the constructive comments of various anonymous reviewers. María Elena Sánchez-Salazar contributed with the editing of the English language.


  1. Atkinson, M.J., and S.V. Smith. 1983. C:N:P ratios of benthic marine plants. Limnology and Oceanography 28: 568–574. doi: 10.4319/lo.1983.28.3.0568.CrossRefGoogle Scholar
  2. Barrón, C., C.M. Duarte, M. Frankignoulle, and A.V. Borges. 2006. Organic carbon metabolism and carbonate dynamics in a Mediterranean seagrass (Posidonia oceanica) meadow. Estuaries and Coasts 29(3): 417–426.CrossRefGoogle Scholar
  3. Bauer, J.E., W.-J. Cai, P.A. Raymond, T.S. Bianchi, C.S. Hopkinson, and P.A.G. Regnier. 2013. The changing carbon cycle of the coastal ocean. Nature 504(7478): 61–70. doi: 10.1038/nature12857.CrossRefGoogle Scholar
  4. Bond, N.A., M.F. Cronin, H. Freeland, and N. Mantua. 2015. Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophysical Research Letters. doi: 10.1002/2015GL063306.Google Scholar
  5. Borges, A.V. 2005. Do we have enough pieces of the jigsaw to integrate CO2 fluxes in the Coastal Ocean? Estuaries 28(1): 3–27.CrossRefGoogle Scholar
  6. Cabello-Pasini, A., R. Muñiz-Salazar, and D.H. Ward. 2003. Annual variations of biomass and photosynthesis in Zostera marina at its southern end of distribution in the North Pacific. Aquatic Botany 76(1): 31–47. doi: 10.1016/S0304-3770(03)00012-3.CrossRefGoogle Scholar
  7. Camacho-Ibar, V.F., J.D. Carriquiry, and S.V. Smith. 2003. Non-conservative P and N fluxes and net ecosystem production in San Quintín Bay, Mexico. Estuaries 26(5): 1220–1237. doi: 10.1007/BF02803626.CrossRefGoogle Scholar
  8. Checkley, D.M., and J.A. Barth. 2009. Patterns and processes in the California current system. Progress in Oceanography 83(1–4): 49–64. doi: 10.1016/j.pocean.2009.07.028.CrossRefGoogle Scholar
  9. Chen, C.T.A., and A.V. Borges. 2009. Reconciling opposing views on carbon cycling in the coastal ocean: continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO2. Deep Sea Research Part II: Topical Studies in Oceanography 56(8–10): 578–590.CrossRefGoogle Scholar
  10. Chen, C.T.A., T.H. Huang, Y.C. Chen, Y. Bai, X. He, and Y. Kang. 2013. Air-sea exchanges of coin the world’s coastal seas. Biogeosciences 10(10): 6509–6544. doi: 10.5194/bg-10-6509-2013.CrossRefGoogle Scholar
  11. Delgadillo-Hinojosa, F., A. Zirino, O. Holm-Hansen, J.M. Hernández-Ayón, T.J. Boyd, B. Chadwick, and I. Rivera-Duarte. 2008. Dissolved nutrient balance and net ecosystem metabolism in a Mediterranean-climate coastal lagoon: San Diego Bay. Estuarine, Coastal and Shelf Sci 76(3): 594–607. doi: 10.1016/j.ecss.2007.07.032.CrossRefGoogle Scholar
  12. Dickson, A.G., and F.J. Millero. 1987. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Research Part A 34(10): 1733–1743.CrossRefGoogle Scholar
  13. Dickson, A.G., J.D. Afghan, and G.C. Anderson. 2003. Reference materials for oceanic CO2 analysis: a method for the certification of total alkalinity. Marine Chemistry 80(2–3): 185–197. doi: 10.1016/S0304-4203(02)00133-0.CrossRefGoogle Scholar
  14. Doney, S.C., B. Tilbrook, S. Roy, N. Metzl, C. Le Quéré, M. Hood, and D. Bakker. 2009. Surface-ocean CO2 variability and vulnerability. Deep Sea Research Part II: Topical Studies in Oceanography 56(8–10): 504–511. doi: 10.1016/j.dsr2.2008.12.016.CrossRefGoogle Scholar
  15. Durazo, R. 2009. Climate and upper ocean variability off Baja California, Mexico: 1997-2008. Progress in Oceanography 83(1–4): 361–368. doi: 10.1016/j.pocean.2009.07.043.CrossRefGoogle Scholar
  16. Farfán, B.C., and S. Álvarez-Borrego. 1983. Variability and fluxes of nitrogen and organic carbon at the mouth of a coastal lagoon. Estuarine, Coastal and Shelf Sci. 17: 599–612.CrossRefGoogle Scholar
  17. Feely, R.A., C.L. Sabine, J.M. Hernandez-Ayon, D. Ianson, and B. Hales. 2008. Evidence for upwelling of corrosive “acidified” water onto the continental shelf. Science 320(5882): 1490–1492. doi: 10.1126/science.1155676.CrossRefGoogle Scholar
  18. García-Reyes, M., and J.L. Largier. 2012. Seasonality of coastal upwelling off central and northern California: new insights, including temporal and spatial variability. Journal of Geophysical Research 117(C3): 1–17. doi: 10.1029/2011JC007629.CrossRefGoogle Scholar
  19. Gordon, D.C. Jr., P.R. Boudreau, K.H. Mann, J.E. Ong, W.L. Silvert, S.V. Smith, G. Wattayakorn, F. Wulff, and T. Yanagi. 1996. LOICZ biogeochemical modeling guidelines. In LOICZ/R&S/95–5. The Netherlands: Land Ocean Interactions in the Coastal Zone, Texel.Google Scholar
  20. Gypens, N., G. Lacroix, C. Lancelot, and A.V. Borges. 2011. Seasonal and inter-annual variability of air-sea CO2 fluxes and seawater carbonate chemistry in the Southern North Sea. Progress in Oceanography 88(1–4): 59–77. doi: 10.1016/j.pocean.2010.11.004.CrossRefGoogle Scholar
  21. Hartmann, D.F. 2015. Pacific sea surface temperature and the winter of 2014. Geophysical Research Letters 42. doi: 10.1002/2015GL063083.
  22. Hernández-Ayón, J.M., S.L. Belli, and A. Zirino. 1999. pH, alkalinity and total CO2 in coastal seawater by potentiometric titration with a difference derivative readout. Anal. Chem. Acta 394(1): 101–108. doi: 10.1016/S0003-2670(99)00207-X.CrossRefGoogle Scholar
  23. Hernández-Ayón, J.M., M.S. Galindo-Bect, V. Camacho-Ibar, Z. García-Esquivel, and F. Ley-Lou. 2004. Dinámica de los nutrientes en el brazo oeste de Bahía San Quintín, Baja California, México durante y después de El Niño 1997/1998. Ciencias Marinas 30(1 A): 119–132.Google Scholar
  24. Hernández-Ayón, J. M., Camacho-Ibar, V. F., Mejía-Trejo, A., & Cabello-Pasini, A. 2007a. Variabilidad del CO2 total durante eventos de surgencia en Bahía San Quintín, Baja California, México. Book: Carbono en ecosistemas acuáticos de México, 187–200. doi:
  25. Hernández-Ayón, J.M., A. Zirino, A.G. Dickson, T. Camiro-Vargas, and E. Valenzuela-Espinoza. 2007b. Estimating the contribution of organic bases from microalgae to the titration alkalinity in coastal seawaters. Limnology and Oceanography: Methods 5: 225e232.Google Scholar
  26. Ho, D.T., C.S. Law, M.J. Smith, P. Schlosser, M. Harvey, and P. Hill. 2006. Measurements of air-sea gas exchange at high wind speeds in the Southern Ocean: implications for global parameterizations. Geophysical Research Letters 33: L16611. doi: 10.1029/2006GL026817.CrossRefGoogle Scholar
  27. Hopkinson, C.S., and E.M. Smith. 2005. Estuarine respiration: an overview of benthic, pelagic, and whole system respiration. In Respiration in aquatic ecosystems, ed. P. del Giorgio, and PJledb Williams, 122–146. Oxford: Oxford University Press.Google Scholar
  28. Ibarra-Obando, S.E., S.V. Smith, M. Poumian-Tapia, V. Camacho-Ibar, J.D. Carriquiry, and M. Montes-Hugo. 2004. Benthic metabolism in San Quintín Bay, Baja California Mexico. Mar. Ecol. Prog. Ser. 283: 99–112. doi: 10.3354/meps283099.CrossRefGoogle Scholar
  29. Ibarra-Obando, S. E., Solana-Arellano, E., Poumian-Tapia, M., de la Torre, B. H., & Gaxiola-Castro, G. 2007. El Papel de Zostera marina en el Ciclo del Carbono en Bahía San Quintín, Baja California. Book: Carbono en ecosistemas acuáticos de México, 201–213.Google Scholar
  30. Lachkar, Z., and N. Gruber. 2013. Response of biological production and air-sea CO2 fluxes to upwelling intensification in the California and Canary Current Systems. Journal of Marine Systems 109-110: 149–160. doi: 10.1016/j.jmarsys.2012.04.003.CrossRefGoogle Scholar
  31. Lewis, E. & Wallace, D. W. R. 1998. Program developed for CO2 system calculations. Oak Ridge National Laboratory. ORNL/CDIAC-105.Google Scholar
  32. Macías, D., P.J.S. Franks, M.D. Ohman, and M.R. Landry. 2012. Modeling the effects of coastal wind- and wind-stress curl-driven upwellings on plankton dynamics in the Southern California current system. Journal of Marine Systems 94: 107–119. doi: 10.1016/j.jmarsys.2011.11.011.CrossRefGoogle Scholar
  33. McGlathery, K.J., I.C. Anderson, and A.C. Tyler. 2001. Magnitude and variability of benthic and pelagic metabolism in a temperate coastal lagoon. Marine Ecology Progress Series 216: 1–15.CrossRefGoogle Scholar
  34. McGlathery, K.J., K. Sundbäck, and I.C. Anderson. 2007. Eutrophication patterns in shallow coastal bays and lagoons. Marine Ecology Progress Series 348: 1–18.CrossRefGoogle Scholar
  35. McGlathery, K.J., K. Sundbäck, and P. Fong. 2013. Estuarine benthic algae. In Estuarine Ecology, Second edn, ed. J.W. Day, B.C. Crump, W.M. Kemp, and A. Yáñez-Arancibia. Hoboken, NJ: John Wiley & Sons, Inc.. doi: 10.1002/9781118412787.ch8.Google Scholar
  36. Mehrbach, C., C.H. Culberson, J.E. Hawley, and R.M. Pytkowicz. 1973. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnology and Oceanography 18(6): 897e907.CrossRefGoogle Scholar
  37. Muñoz-Anderson, M.A., J.R. Lara-Lara, S. Alvarez-Borrego, C. Bazan-Guzman, and M. de la Cruz-Orozco. 2015. Water–air carbon fluxes in the coastal upwelling zone off northern Baja California. Ciencias Marinas 41(2): 157–168.CrossRefGoogle Scholar
  38. Reimer, J., R. Vargas, S.V. Smith, R. Lara-Lara, G. Gaxiola-Castro, J.M. Hernández-Ayón, A. Castro, M. Escoto-Rodríguez, and J. Martínez-Osuna. 2013. Air-sea CO2 fluxes in the near-shore and intertidal zones influenced by the California Current. Journal of Geophysical Research: Oceans Vol. 118: 1–16.Google Scholar
  39. Ribas-Ribas, M., J.M. Hernández-Ayón, V.F. Camacho-Ibar, A. Cabello-Pasini, A. Mejia-Trejo, R. Durazo, et al. 2011. Effects of upwelling, tides and biological processes on the inorganic carbon system of a coastal lagoon in Baja California. Estuarine, Coastal and Shelf Sci 95(4): 367–376. doi: 10.1016/j.ecss.2011.09.017.CrossRefGoogle Scholar
  40. Sabine, C.L., R.A. Feely, N. Gruber, R.M. Key, K. Lee, L. Bullister J., R. Wanninkhof, C.S. Wong, D.W.R. Wallace, B. Tilbrook, et al. 2004. The oceanic sink for anthropogenic CO2. Science 305(5682): 367–371.CrossRefGoogle Scholar
  41. Smith, S.V., and J.T. Hollibaugh. 1997. Annual cycle and interannual variability of ecosystem metabolism in a temperate climate embayment. Ecological Monographs 67(4): 509e533.CrossRefGoogle Scholar
  42. Takahashi, T., S.C. Sutherland, C. Sweeney, A. Poisson, N. Metzl, B. Tilbrook, and Y. Nojiri. 2002. Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep Sea Research Part II: Topical Studies in Oceanography 49(9–10): 1601–1622. doi: 10.1016/S0967-0645(02)00003-6.CrossRefGoogle Scholar
  43. Takahashi, T., S.C. Sutherland, R. Wanninkhof, C. Sweeney, R.A. Feely, D.W. Chipman, and H.J.W. de Baar. 2009. Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans. Deep Sea Research Part II: Topical Studies in Oceanography 56(8–10): 554–577. doi: 10.1016/j.dsr2.2008.12.009.CrossRefGoogle Scholar
  44. Testa, J.M., W.M. Kemp, C.S. Hopkinson, and S.V. Smith. 2013. Ecosystem metabolism. In Estuarine Ecology, Second edn, ed. J.W. Day, B.C. Crump, W.M. Kemp, and A. Yáñez-Arancibia. Hoboken, NJ: Wiley, Inc.. doi: 10.1002/9781118412787.ch15.Google Scholar
  45. Thomas, H., L.-S. Schiettecatte, K. Suykens, Y.J.M. Kone, E.H. Shad-wick, A.E.F. Prowe, Y. Bozec, H.J.W. de Baar, and A.V. Borges. 2009. Enhanced ocean carbon storage from anaerobic alkalinity generation in coastal sediments. Biogeosciences 6: 267–274. doi: 10.5194/bg-6-267-2009.CrossRefGoogle Scholar
  46. Wanninkhof, R. 1992. Relationship between wind speed and gas exchange over the ocean. Journal of Geophysical Research 97(C5): 7373–7382.CrossRefGoogle Scholar
  47. Ward, D.H., T.L. Tibbitts, E. Carrera-González, and R. Kempka. 2004. Use of digital multispectral videography to assess seagrass distribution in San Quintín Bay, Baja California, Mexico. Ciencias Marinas 30(1A): 47–60.Google Scholar
  48. Weiss, R.F. 1974. Carbon dioxide in water and seawater: the solubility of a non ideal gas. Marine Chemistry 2(3): 203–215.CrossRefGoogle Scholar
  49. Zertuche-González, J.A., V.F. Camacho-Ibar, I. Pacheco-Ruíz, A. Cabello-Pasini, L.A. Galindo-Bect, J.M. Guzmán-Calderón, and J. Espinoza-Avalos. 2009. The role of Ulva spp. as a temporary nutrient sink in a coastal lagoon with oyster cultivation and upwelling influence. Journal of Applied Phycology 21(6): 729–736. doi: 10.1007/s10811-009-9408-y.CrossRefGoogle Scholar

Copyright information

© Coastal and Estuarine Research Federation 2016

Authors and Affiliations

  • Ma Carmen Ávila-López
    • 1
    • 2
  • J. Martín Hernández-Ayón
    • 2
    • 3
  • Víctor F. Camacho-Ibar
    • 2
    • 3
  • Armando Félix Bermúdez
    • 1
    • 2
  • Adan Mejía-Trejo
    • 2
    • 3
  • Isaí Pacheco-Ruiz
    • 2
    • 3
  • Jose M. Sandoval-Gil
    • 2
    • 3
  1. 1.Facultad de Ciencias Marinas e Instituto de Investigaciones OceanológicasUniversidad Autónoma de Baja CaliforniaEnsenadaMexico
  2. 2.Carr. Transpeninsular Ensenada-TijuanaEnsenadaMexico
  3. 3.Instituto de Investigaciones OceanológicasUniversidad Autónoma de Baja CaliforniaEnsenadaMexico

Personalised recommendations