Skip to main content

Advertisement

Log in

Response of an Arctic Sediment Nitrogen Cycling Community to Increased CO2

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Ocean acidification influences sediment/water nitrogen fluxes, possibly by impacting on the microbial process of ammonia oxidation. To investigate this further, undisturbed sediment cores collected from Ny Alesund harbour (Svalbard) were incubated with seawater adjusted to CO2 concentrations of 380, 540, 760, 1,120 and 3,000 µatm. DNA and RNA were extracted from the sediment surface after 14 days' exposure and the abundance of bacterial and archaeal ammonia oxidising (amoA) genes and transcripts quantified using quantitative polymerase chain reaction. While there was no change to the abundance of bacterial amoA genes, an increase to 760 µatm pCO2 reduced the abundance of bacterial amoA transcripts by 65 %, and this was accompanied by a shift in the composition of the active community. In contrast, archaeal amoA gene and transcript abundance both doubled at 3,000 µatm, with an increase in species richness also apparent. This suggests that ammonia oxidising bacteria and archaea in marine sediments have different pH optima, and the impact of elevated CO2 on N cycling may be dependent on the relative abundances of these two major microbial groups. Further evidence of a shift in the balance of key N cycling groups was also evident: the abundance of nirS-type denitrifier transcripts decreased alongside bacterial amoA transcripts, indicating that NO3 produced by bacterial nitrification fuelled denitrification. An increase in the abundance of Planctomycete-specific 16S rRNA, the vast majority of which grouped with known anammox bacteria, was also apparent at 3,000 µatm pCO2. This could indicate a possible shift from coupled nitrification–denitrification to anammox activity at elevated CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alonso-Sáez, L., A.S. Waller, D.R. Mende, K. Bakker, H. Farnelid, P.L. Yager, C. Lovejoy, J.E. Tremblay, M. Potvin, F. Heinrich, M. Estrada, L. Riemann, P. Bork, C. Pedros-Alio, and S. Bertilsson. 2012. Role for urea in nitrification by polar marine Archaea. Proceedings of the National Academy of Sciences of the United States of America 109: 17989–17994.

    Article  Google Scholar 

  • Beman, J.M., B.N. Popp, and C.A. Francis. 2008. Molecular and biogeochemical evidence for ammonia oxidation by marine Crenarchaeota in the Gulf of California. The ISME Journal 2: 429–441.

    Article  CAS  Google Scholar 

  • Beman, J.M., C.E. Chow, A.L. King, Y. Feng, J.A. Fuhrman, A. Andersson, N.R. Bates, B.N. Popp, and D. Hutchins. 2011. Global declines in oceanic nitrification rates as a consequence of ocean acidification. Proceedings of the National Academy of Sciences of the United States of America 108: 208–213.

    Article  CAS  Google Scholar 

  • Bernhard, A.E., Z.C. Landry, A. Blevins, J.R. de la Torre, A.E. Giblin, and D.A. Stahl. 2010. Abundance of ammonia-oxidising archaea and bacteria along an estuarine salinity gradient in relation to potential nitrification rates. Applied and Environmental Microbiology 76: 1285–1289.

    Article  CAS  Google Scholar 

  • Biddle, J.F., J.S. Lipp, M.A. Lever, K.G. Lloyd, K.B. Sørensen, R. Anderson, H.F. Fredricks, M. Elvert, T.J. Kelly, D.P. Schrag, M.L. Sogin, J.E. Brenchley, A. Teske, C.H. House, and K.H. Hinrichs. 2006. Heterotrophic Archaea dominate sedimentary subsurface ecosystems off Peru. Proceedings of the National Academy of Sciences of the United States of America 103: 3846–3851.

    Article  CAS  Google Scholar 

  • Braker, G., A. Fesefeldt, and K.P. Witzel. 1998. Development of PCR primer systems for amplification of nitrite reductase genes (nirK and nirS) to detect denitrifying bacteria in environmental samples. Applied and Environmental Microbiology 64: 3769–3775.

    CAS  Google Scholar 

  • Caffrey, J.M., N. Bano, K. Kalanetra, and J.T. Hollibaugh. 2007. Ammonia oxidation and ammonia-oxidizing bacteria and archaea from estuaries with differing histories of hypoxia. The ISME Journal 1: 660–662.

    Article  Google Scholar 

  • Caldeira, K., and M.E. Wickett. 2003. Oceanography: Anthropogenic carbon and ocean pH. Nature 425: 365.

    Article  CAS  Google Scholar 

  • Church, M.J., B. Wai, D.M. Karl, and E.F. DeLong. 2010. Abundances of crenarchaeal amoA genes and transcripts in the Pacific Ocean. Environmental Microbiology 12: 679–688.

    Article  CAS  Google Scholar 

  • Clarke, K.R., and Gorley, R.N. 2006. PRIMER v6.1: User manual/tutorial. PRIMER-E, Plymouth.

  • Connell, J.H. 1978. Diversity in tropical rain forests and coral reefs. Science 199: 1302–1310.

    Article  CAS  Google Scholar 

  • Coolen, M.J.L., B. Abbas, J. van Bleijswijk, E.C. Hopmans, M.M.M. Kuypers, S.G. Wakeman, and J.S. Sinninge Damstė. 2007. Putative ammonia-oxidizing Crenarchaeota in suboxic waters of the Black Sea: A basin-wide ecological study using 16S ribosomal and functional genes and membrane lipids. Environmental Microbiology 9: 1001–1016.

    Article  CAS  Google Scholar 

  • Fabry, V.J., B.A. Seibel, R.A. Feely, and J.C. Orr. 2008. Impacts of ocean acidification on marine fauna and ecosystem processes. ICES Journal of Marine Sciences 64: 414–432.

    Article  Google Scholar 

  • Feely, R.A., C.L. Sabine, K. Lee, W. Berelson, J. Kleypas, V.J. Fabry, and F.J. Millero. 2004. Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305: 362–366.

    Article  CAS  Google Scholar 

  • Francis, C.A., G.D. O'Mullan, and B.B. Ward. 2003. Diversity of ammonia monooxygenase (amoA) genes across environmental gradients in Chesapeake Bay sediments. Geobiology 1: 129–140.

    Article  CAS  Google Scholar 

  • Francis, C.A., K.J. Roberts, J.M. Beman, A.E. Santoro, and B.B. Oakley. 2005. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proceedings of the National Academy of Sciences of the United States of America 102: 14683–14688.

    Article  CAS  Google Scholar 

  • Fulweiler, R.W., H.E. Emery, E.M. Heiss, and V.M. Berounsky. 2011. Assessing the role of pH in determining water column nitrification rates in a coastal system. Estuaries and Coasts 34: 1095–1102.

    Article  CAS  Google Scholar 

  • Gazeau, F., P. van Rijswijk, L. Pozzato, J.J. Middelburg. 2013. Impacts of ocean acidification on sediment processes in shallow-waters of the Arctic Ocean. Estuaries and Coasts (under review).

  • Girvan, M.S., C.D. Campbell, K. Killham, J.I. Prosser, and L.A. Glover. 2005. Bacterial diversity promotes community stability and functional resilience after perturbation. Environmental Microbiology 7: 301–313.

    Article  CAS  Google Scholar 

  • Gubry-Rangin, C., G.W. Nicol, and J.I. Prosser. 2010. Archaea rather than bacteria control nitrification in two agricultural acidic soils. FEMS Microbiology Ecology 74: 566–574.

    Article  CAS  Google Scholar 

  • Hornek, R., A. Pommerening-Röser, H.P. Koops, A.H. Farmleiter, N. Kreuzinger, A. Kirschner, and R.L. Mach. 2006. Primers containing universal bases reduce multiple amoA gene specific DGGE band patterns when analysing the diversity of beta-ammonia oxidizers in the environment. Journal of Microbiol Methods 66: 147–155.

    Article  CAS  Google Scholar 

  • Huesemann, M.H., A.D. Skillman, and E.A. Crecelius. 2002. The inhibition of marine nitrification by ocean disposal of carbon dioxide. Marine Pollution Bulletin 44: 142–148.

    Article  CAS  Google Scholar 

  • Hutchins, D.A., M.R. Mulholland, and F.X. Fu. 2009. Nutrient cycles and marine microbes in a CO2-enriched ocean. Oceanography 22: 128–145.

    Article  Google Scholar 

  • Jia, Z., and R. Conrad. 2009. Bacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soil. Environmental Microbiology 11: 1658–1671.

    Article  CAS  Google Scholar 

  • Joye, S.B., and Anderson, I.C. 2008. Nitrogen cycling in estuarine and nearshore sediments. In: Nitrogen in the marine environment, eds Capone D., D. Bronk, E. Carpenter, M. Mulhollond, 868–915. Springer Verlag.

  • Kitidis, V., B. Laverock, C.L. McNeil, A. Beesley, D. Cummings, K. Tait, A.M. Osborn, and S. Widdicombe. 2011. The impact of ocean acidification on sediment nitrification. Geophysical Research Letters. doi:10.1029/2011GL049095.

    Google Scholar 

  • Kristensen, E. 2000. Organic matter diagenesis at the oxic/anoxic interface in coastal marine sediments, with emphasis on the role of burrowing animals. Hydrobiologia 426: 1–24.

    Google Scholar 

  • Lam, P., M.M. Jensen, G. Lavik, D.F. McGinnis, B. Muller, C.J. Schubert, R. Amann, B. Thamdrup, and M.M.M. Kuypers. 2007. Linking crenarchaeal and bacterial nitrification to anammox in the Black Sea. Proceedings of the National Academy of Sciences United States of America 104: 7104–7109.

    Article  CAS  Google Scholar 

  • Laverock, B., C.J. Smith, K. Tait, A.M. Osborn, S. Widdicombe, and J.A. Gilbert. 2010. Bioturbating shrimp alter the structure and diversity of bacterial communities in coastal marine sediments. The ISME Journal 4: 1531–1544.

    Article  Google Scholar 

  • Laverock, B., V. Kitidis, K. Tait, A.M. Osborn, J.A. Gilbert, and S. Widdicombe. 2013. Bioturbation activity determines the response of coastal benthic nitrogen-cycling microorganisms to ocean acidification. Philosophical Transactions of the Royal Society of London B. doi:10.1098/rstb.2012.0441.

  • Lehtovirta, L.E., J.I. Prosser, and G.W. Nicol. 2009. Soil pH regulates the abundance and diversity of Group 1.1c Crenarchaeota. FEMS Microbiology Ecology 70: 367–376.

    Article  CAS  Google Scholar 

  • Martens-Habbena, W., P.M. Berube, H. Urakawa, J.R. de la Torre, and D.A. Stahl. 2009. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature 461: 976–979.

    Article  CAS  Google Scholar 

  • Nicol, G.W., S. Leininger, C. Schleper, and J.I. Prosser. 2008. The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environmental Microbiology 10: 2966–2978.

    Article  CAS  Google Scholar 

  • Norton, J.M., J.J. Alzerreca, Y. Suwa, and M.G. Klotz. 2002. Diversity of ammonia monooxygenase operon in autotrophic ammonia-oxidizing bacteria. Archives of Microbiology 177: 139–149.

    Article  CAS  Google Scholar 

  • Pratscher, J., M.G. Dumont, and R. Conrad. 2011. Ammonia oxidation coupled to CO2 fixation by archaea and bacteria in an agricultural soil. Proceedings of the National Academy of Sciences United Statse of America 108: 4170–4175.

    Article  CAS  Google Scholar 

  • Prosser, J.I. 1986. Theoretical and experimental models of nitrification. Nitrification 20: 63–78.

    Google Scholar 

  • Santoro, A.E., K.L. Casciotti, and C.A. Francis. 2010. Activity, abundance and diversity of nitifying archaea and bacteria in the central California Current. Environmental Microbiology 12: 1989–2006.

    Article  CAS  Google Scholar 

  • Schloss, P.D., and J. Handelsman. 2005. Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Applied and Environmental Microbiology 71: 1501–1506.

    Article  CAS  Google Scholar 

  • Schmid, M., K.A. Walsh, R. Webb, W.I.C. Rijpstra, K. van de Pas-Schoonen, M.L. Verbreuggen, T.C.J. Hill, B.F. Moffett, J. Fuerst, and S. Schouten. 2003. Candidatus "Scalindua broad", sp. nov., Candidatus "Scalindua wagneri", sp. nov., two new species of anaerobic ammonia oxidizing bacteria. Systematic and Applied Microbiology 26: 529–538.

    Article  CAS  Google Scholar 

  • Shen, J.P., L.M. Zhang, Y.G. Zhu, J.B. Zhang, and J.Z. He. 2008. Abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea communities on an alkaline sandy loam. Environmental Microbiology 10: 1601–1611.

    Article  CAS  Google Scholar 

  • Smith, C.J., D.B. Nedwell, L.F. Dong, and A.M. Osborn. 2006. Evaluation of quantitative polymerase chain reaction-based approaches for determining gene copy and gene transcript numbers in environmental samples. Environmental Microbiology 8: 804–815.

    Article  CAS  Google Scholar 

  • Solomon, S., D. Qin, M. Manning, R.B. Alley, T. Berntsen, N.L. Bindoff, Z. Chen, A. Chidthaisong, J.M. Gregory, G.C. Hegerl, M. Heimann, B. Hewitson, B.J. Hoskins, F. Joos, J. Jouzel, V. Kattsov, U. Lohmann, T. Matsuno, M. Molina, N. Nicholls, J. Overpeck, G. Raga, V. Ramaswamy, J. Ren, M. Rusticucci, R. Somerville, T.F. Stocker, P. Whetton, R.A. Wood, and D. Wratt. 2007. Technical Summary. In Climate Change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change, ed. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller. Cambridge: Cambridge University Press. 19–9.1.

    Google Scholar 

  • Stein, L.Y., D.J. Arp, and M.R. Hyman. 1997. Regulation of the synthesis and activity of ammonia monooxygenase in Nitrosomonas europaea by altering pH to affect NH3 availability. Applied and Environmental Microbiology 63: 4588–4592.

    CAS  Google Scholar 

  • Steinacher, M., F. Joos, T.L. Frölicher, G.K. Plattner, and S.C. Doney. 2009. Imminent ocean acidification in the Arctic projected with the NCAR global coupled carbon cycle-climate model. Biogeosciences 6: 515–533.

    Article  CAS  Google Scholar 

  • Stephen, J.R., A.E. McCaig, Z. Smith, J.I. Prosser, and T.M. Embley. 1996. Molecular diversity of soil and marine 16S rRNA gene sequences related to beta-subgroup ammonia-oxidizing bacteria. Applied and Environmental Microbiology 62: 4147–4154.

    CAS  Google Scholar 

  • Strous, M., J.J. Heijnen, J.G. Kuenen, and M.S.M. Jetten. 1998. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms. Applied Microbiology and Biotechnology 50: 589–596.

    Article  CAS  Google Scholar 

  • Suzuki, I., U. Dular, and S.C. Kwok. 1974. Ammonia or ammonium ion as substrate for oxidation by Nitrosomonas europaea cells and extracts. Journal of Bacteriology 120: 556–558.

    CAS  Google Scholar 

  • Suzuki, M.T., L.T. Taylor, and E.F. Delong. 2000. Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5′-nuclease assays. Applied and Environmental Microbiology 66: 4605–4614.

    Article  CAS  Google Scholar 

  • Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24: 1596–1599.

    Article  CAS  Google Scholar 

  • Thomsen, J., M.A. Gutowska, J. Saphörster, A. Heinemann, K. Trübenbach, J. Fietzke, C. Hiebenthal, A. Eisenhauer, A. Körtzinger, M. Wahl, and F. Melzner. 2010. Calcifying invertebrates succeed in a naturally CO2-rich coastal habitat but are threatened by high levels of future acidification. Biogeosciences 7: 3879–3891.

    Article  CAS  Google Scholar 

  • Ward, B.B. 1987. Kinetic studies on ammonia and methane oxidation by Nitrosococcus oceanus. Archives of Microbiology 147: 126–133.

    Article  CAS  Google Scholar 

  • Widdicombe, S., and H.R. Needham. 2007. Impact of CO2-induced seawater acidification on the burrowing activity of Nereis virens and sediment nutrient flux. Marine Ecology Progress Series 341: 111–122.

    Article  Google Scholar 

  • Widdicombe, S., and J.I. Spicer. 2008. Predicting the impact of ocean acidification on benthic biodiversity: What can physiology tell us? Journal of Experimental Marine Biology and Ecology 366: 187–197.

    Article  Google Scholar 

  • Widdicombe, S., S.L. Dashfield, C.L. McNeill, H.R. Needham, A. Beesley, A. McEvoy, S. Øxnevad, K.R. Clarke, and J.A. Berge. 2009. Impact of CO2 induced seawater acidification on sediment diversity and nutrient flux. Marine Ecology Progress Series 379: 59–75.

    Article  CAS  Google Scholar 

  • Widdicombe, S., A. Beesley, J. A. Berge, S. L. Dashfield, C. L. McNeill, H. R. Needham, and S. Øxnevad. 2013. Impact of elevated levels of CO2 on animal mediated ecosystem function: The modification of sediment nutrient fluxes by burrowing urchins. Marine Pollution Bulletin. http://dx.doi.org/10.1016/j.marpolbul.2012.11.008.

  • Wuchter, C., B. Abbas, M.J.L. Coolen, L. Herfort, J. van Bleijswijk, P. Timmers, M. Strous, E. Teira, G.J. Herndl, J.J. Middelburg, S. Schouten, and J.S. Sinninghe Damstè. 2006. Archaeal nitrification in the ocean. Proceedings of the National Academy of Sciences of the United States of America 103: 12317–12322.

    Article  CAS  Google Scholar 

  • Zhang, L.M., P.R. Offre, J.H. He, D.T. Verhamme, G.W. Nicols, and J.I. Prosser. 2010. Autotrophic ammonia oxidation by soil thaumarchaea. Proceedings of the National Academy of Sciences of the United States of America 107: 17240–17245.

    Article  CAS  Google Scholar 

  • Zhu, Q.Z., R.C. Aller, and Y.Z. Fan. 2006. Two-dimensional pH distributions and dynamics in bioturbated marine sediments. Geochimica et Cosmochimica Acta 70: 4933–4949.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the European Project on Ocean Acidification (EPOCA), funded by the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 211384, and was also supported by the NERC funded programme Oceans 2025 (Theme 3 – Coastal and Shelf Processes). B.L. acknowledges funding from an NERC Algorithm PhD Studentship (NE/F008864/1). We thank Helen Findlay and Hannah Wood for setting up the mesocosm system, Fred Gazeau, Peter van Rijswijk, Lara Pozzato, Marie-Dominique Pizay and Jean-Pierre Gattuso for providing the carbonate and nutrient data, Max Schwanitz, Sandra Treydte and Julian Mönnich for collecting the sediment cores, Vas Kitidis and Bess Ward for useful discussions and Paul Somerfield for advice on statistical analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen Tait.

Additional information

Communicated by Bongkeun Song

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

DGGE gel images of bacterial amoA (a) and archaeal amoA (b) transcripts. Numbers represent sediments cores, and each lane is combined from the PCR products from four replicate RNA extractions from each core (JPEG 43 kb)

High resolution image (TIFF 40099 kb)

Fig. S2

Phylogenetic tree of nirS transcripts from OTU data (80 % similarity) retrieved from the different pCO2 treatments (filled triangle 8.1, filled square 7.7, filled circle 7.2), shown alongside previously reported environmental sequences. The number of sequences derived from each pCO2 treatment is also shown for each OTU. The tree topology is based on neighbour-joining and bootstrap analysis was performed with 1,000 replications (MEGA 5). The accession numbers of the reference sequences are shown in parentheses (JPEG 606 kb)

High resolution image (EPS 521 kb)

Supplementary Table 1

Environmental conditions in the cores averaged over the 14 day experimental period, values are means (n = 5) (± 95 % confidence intervals). pH, temperature (ºC), salinity and total alkalinity (TA, μmol kg-1) were measured and used to calculate pCO2 (μatm), dissolved inorganic carbon (DIC, μmol kg-1), and saturation states for calcite (ΩC) and aragonite (ΩA). Details of how these values were measured and calculated can be found in Gazeau et al. (manuscript in revision). (DOC 34 kb)

Supplementary Table 2

Primer pairs and reaction conditions used for q-PCR and RT-qPCR assays (DOC 49 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tait, K., Laverock, B. & Widdicombe, S. Response of an Arctic Sediment Nitrogen Cycling Community to Increased CO2 . Estuaries and Coasts 37, 724–735 (2014). https://doi.org/10.1007/s12237-013-9709-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-013-9709-x

Keywords

Navigation