Skip to main content

Advertisement

Log in

The Impact of Mangrove Prop-Root Epibionts on Juvenile Reef Fishes: A Field Experiment Using Artificial Roots and Epifauna

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

A field experiment was established in Bocas Del Toro, Panama to examine the relationship between sessile organisms living on mangrove prop roots and fish communities. Artificial mangrove roots (AMR) with different sets of artificial (AE) or real epibionts were established in five different locations in two separate years. Fish species in each plot were identified, counted, and their size estimated by visual census for 15 days in each replicate. In the artificial mangrove plots, the treatments with the most heterogeneous structure had significantly greater abundance of most families and species richness of fish in both years of the experiment. AMR plots with AEs attracted a more abundant and diverse fish assemblage than those with live epibionts, which had lower three-dimensional structure. All of the AMR plots had significantly greater fish abundance than comparable plots of sea grass alone. The location of the replicate also made a significant difference to fish abundance. The data indicate that prop-root epibionts can enhance fish abundance and diversity in mangroves, although the relationship may depend on the specific nature of the epibionts and fishes present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aguilar-Perera, A., and R.S. Appeldoorn. 2008. Spatial distribution of marine fishes along a cross-shelf gradient containing a continuum of mangrove-seagrass-coral reefs off southwestern Puerto Rico. Estuarine, Coastal, and Shelf Science 76: 378–394. doi:10.1016/j.ecss.2007.07.016.

    Article  Google Scholar 

  • Barletta, M., A. Barletta-Bergan, U. Saint-Paul, and G. Hubold. 2003. Seasonal changes in density, biomass, and diversity of estuarine fishes in tidal mangrove creeks of the lower Caeté Estuary (northern Brazilian coast, east Amazon). Marine Ecology Progress Series 256: 217–228. doi:10.3354/meps256217.

    Article  Google Scholar 

  • Beukers, J.S., and G.P. Jones. 1998. Habitat complexity modifies the impact of piscivores on a coral reef fish population. Oecologia 114: 50–59. doi:10.1007/s004420050419.

    Article  Google Scholar 

  • Caley, M.J., and J. St. John. 1996. Refuge availability structures assemblages of tropical reef fishes. Journal of Animal Ecology 65: 414–428. doi:10.2307/5777.

    Article  Google Scholar 

  • Cocheret de la Moriniere, E., I. Nagelkerken, H. van der Meij, and G. van der Velde. 2004. What attracts juvenile coral reef fish to mangroves: Habitat complexity or shade? Marine Biology 144: 139–145. doi:10.1007/s00227-003-1167-8.

    Article  Google Scholar 

  • Crowder, L.B., and W.E. Cooper. 1982. Habitat structural complexity and the interaction between bluegills and their prey. Ecology 63: 1802–1813. doi:10.2307/1940122.

    Article  Google Scholar 

  • Cruz-Rivera, E., and V.J. Paul. 2006. Feeding by coral reef mesograzers: Algae or cyanobacteria? Coral Reefs 25: 617–627. doi:10.1007/s00338-006-0134-5.

    Article  Google Scholar 

  • Dorenbosch, M., M.C. van Riel, I. Nagelkerken, and G. van der Velde. 2004. The relationship of reef fish densities to the proximity of mangrove and seagrass nurseries. Estuarine, Coastal, and Shelf Science 60: 37–48. doi:10.1016/j.ecss.2003.11.018.

    Article  Google Scholar 

  • Dorenbosch, M., M.G.G. Grol, M.J.A. Chrisitianen, I. Nagelkerken, and G. van der Velde. 2005. Indo-Pacific seagrass beds and mangroves contribute to fish density and diversity on adjacent coral reefs. Marine Ecology Progress Series 302: 63–76. doi:10.3354/meps302063.

    Article  Google Scholar 

  • Ellis, W.L., and S.S. Bell. 2004. Conditional use of mangrove habitat by fishes: Depth as cue to avoid predators. Estuaries 27: 966–976.

    Article  Google Scholar 

  • Ellison, A.M. 2008. Managing mangroves with benthic biodiversity in mind: Moving beyond roving banditry. Journal of Sea Research 59: 2–15. doi:10.1016/j.seares.2007.05.003.

    Article  Google Scholar 

  • Ellison, A.M., and E.J. Farnsworth. 1990. The ecology of Belizean mangrove-root fouling communities. I. Epibenthic fauna are barriers to isopod attack of red mangrove roots. Journal of Experimental Marine Biology and Ecology 142: 91–104. doi:10.1016/0022-0981(90)90139-4.

    Article  Google Scholar 

  • Faunce, C.H., and J.E. Serafy. 2006. Mangroves as fish habitat: 50 years of field studies. Marine Ecology Progress Series 318: 1–18. doi:10.3354/meps318001.

    Article  Google Scholar 

  • Froese, R. and D. Pauly. 2007. Fishbase: www.fishbase.org.

  • Gotceitas, V., and P. Colgan. 1989. Predator foraging success and habitat complexity: Quantitative test of the threshold hypothesis. Oecologia 80: 158–166.

    Google Scholar 

  • Gratwicke, B., and M.R. Speight. 2005a. Effects of habitat complexity on Caribbean marine fish assemblages. Marine Ecology Progress Series 292: 301–310. doi:10.3354/meps292301.

    Article  Google Scholar 

  • Gratwicke, B., and M.R. Speight. 2005b. The relationship between fish species richness, abundance and habitat complexity in a range of shallow tropical marine habitats. Journal of Fish Biology 66: 650–667. doi:10.1111/j.0022-1112.2005.00629.x.

    Article  Google Scholar 

  • Guzman, H.M., P.A.G. Barnes, C.E. Lovelock, and I.C. Feller. 2005. A site description of the CARICOMP mangrove, seagrass, and coral reef sites in Bocas del Toro, Panama. Caribbean Journal of Science 413: 430–440.

    Google Scholar 

  • Kieckbusch, D.K., M.S. Koch, J.E. Serafy, and W.T. Anderson. 2004. Trophic linkages among primary producers and consumers in fringing mangroves of subtropical lagoons. Bulletin of Marine Science 74: 271–285.

    Google Scholar 

  • Laegdsgaard, P., and C. Johnson. 2001. Why do juvenile fish utilise mangrove habitats? Journal of Experimental Marine Biology and Ecology 257: 229–253. doi:10.1016/S0022-0981(00)00331-2.

    Article  Google Scholar 

  • Luckhurst, B.E., and K. Luckhurst. 1978a. Analysis of the influence of substrate variables on coral reef fish communities. Marine Biology 49: 317–323. doi:10.1007/BF00455026.

    Article  Google Scholar 

  • Luckhurst, B.E., and K. Luckhurst. 1978b. Diurnal space utilization in coral reef fish communities. Marine Biology 49: 325–332. doi:10.1007/BF00455027.

    Article  Google Scholar 

  • Lugendo, B.R., A. de Groene, I. Cornelissen, A. Pronker, I. Nagelkerken, G. van der Velde, and Y.D. Mgaya. 2007. Spatial and temporal variation in fish community structure of a marine embayment in Zanzibar, Tanzania. Hydrobiologia 586: 1–16. doi:10.1007/s10750-006-0398-3.

    Article  Google Scholar 

  • Manatunge, J., T. Asaeda, and T. Priyadarshana. 2000. The influence of structural complexity on fish-zooplankton interations: A study using artificial submerged macrophytes. Environmental Biology of Fishes 58: 425–438. doi:10.1023/A:1007691425268.

    Article  Google Scholar 

  • Manson, F.J., N.R. Loneragan, B.D. Harch, G.A. Skilleter, and L. Williams. 2005. A broad-scale analysis of links between coastal fisheries production and mangrove extent: A case study for Northeastern Australia. Fisheries Research 74: 69–85. doi:10.1016/j.fishres.2005.04.001.

    Article  Google Scholar 

  • Meager, J.J., I. Williamson, N.R. Loneragan, and D.J. Vance. 2005. Habitat selection of juvenile banana prawns, Penaeus merguiensis de Man: Testing the roles of habitat structure, predators, light phase and prawn size. Journal of Experimental Marine Biology and Ecology 324: 89–98. doi:10.1016/j.jembe.2005.04.012.

    Article  Google Scholar 

  • Mumby, P.J., A.J. Edwards, J.E. Arlas-Gonzalez, K.G. Lindeman, P.G. Blackwell, A. Gall, M.I. Gorczynska, A.R. Harborne, C.L. Pescod, H. Renken, C.C.C. Wabnitz, and G. Llewellyn. 2004. Mangroves enhance the biomass of coral reef fishes in the Caribbean. Nature 427: 533–536. doi:10.1038/nature02286.

    Article  CAS  Google Scholar 

  • Nagelkerken, I., and C.H. Faunce. 2007. Colonisation of artificial mangroves by reef fishes in a marine seascape. Estuarine, Coastal, and Shelf Science 75: 417–422. doi:10.1016/j.ecss.2007.05.030.

    Article  Google Scholar 

  • Nagelkerken, I., C.M. Roberts, G. van der Velde, M. Dorenbosch, M.C. van Riel, E. Cocheret de la Moriniere, and P.H. Nienhuis. 2002. How important are mangroves and seagrass beds for coral reef fish? The nursery hypothesis tested on an island scale. Marine Ecology Progress Series 244: 299–305. doi:10.3354/meps244299.

    Article  Google Scholar 

  • Nagelkerken, I., G. van der Velde, M.W. Gorissen, G.J. Meijer, T. van't Hof, and C. den Hartog. 2000. Importance of mangroves, seagrass beds, and the shallow coral reef as a nursery for important coral reef fishes, using a visual census technique. Estuarine, Coastal, and Shelf Science 51: 31–44. doi:10.1006/ecss.2000.0617.

    Article  Google Scholar 

  • Parrish, J.D. 1989. Fish communities of interacting shallow-water habitats in tropical oceanic regions. Marine Ecology Progress Series 58: 143–160. doi:10.3354/meps058143.

    Article  Google Scholar 

  • Spitzer, P.M., J. Mattila, and K.L. Heck. 2000. The effects of vegetation density on the relative growth rates of juvenile pinfish, Lagodon rhomboides (Linneaus) in Big Lagoon, Florida. Journal of Experimental Marine Biology and Ecology 244: 67–86. doi:10.1016/S0022-0981(99)00130-6.

    Article  Google Scholar 

  • Stewart, B.D., and G.P. Jones. 2001. Associations between the abundance of piscivorous fishes and their prey on coral reefs: Implications for prey-fish mortality. Marine Biology 138: 383–397. doi:10.1007/s002270000468.

    Article  Google Scholar 

  • Stoner, A.W. 1986. community structure of the demersal fish species of Laguna Joyuda, Puerto Rico. Estuaries 9: 142–152. doi:10.2307/1351947.

    Article  Google Scholar 

  • Sutherland, J.P. 1980. Dynamics of the epibenthic community on roots of the mangrove Rhizophora mangle, at Bahia de Buche, Venezuela. Marine Biology 58: 75–84. doi:10.1007/BF00386882.

    Article  Google Scholar 

  • Verweij, M.C., I. Nagelkerken, D. de Graaf, M. Peeters, E.J. Bakker, and G. van der Velde. 2006a. Structure, food and shade attract juvenile coral reef fish to mangrove and seagrass habitats: A field experiment. Marine Ecology Progress Series 306: 257–268. doi:10.3354/meps306257.

    Article  Google Scholar 

  • Verweij, M.C., I. Nagelkerken, S.L.J. Wartenbergh, I.R. Pen, and G. van der Velde. 2006b. Caribbean mangroves and seagrass beds as daytime feeding habitats for juvenile French grunts, Haemulon flavolineatum. Marine Biology 149: 1291–1299. doi:10.1007/s00227-006-0305-5.

    Article  Google Scholar 

  • Warfe, D.M., and L.A. Barmuta. 2004. Habitat structural complexity mediates the foraging success of multiple predator species. Oecologia 141: 171–178. doi:10.1007/s00442-004-1644-x.

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by a STRI Short-Term Fellowship and by The Academic Excellence Fund of the Rutgers University Graduate Program in Ecology and Evolution. The authors additionally wish to thank R. Collin, G. Jacome, and P. Gondola at STRI for logistical support, T. Lawrence for field assistance, and T. Robertson, J. Reichmuth, C. Santiago-Bass, A. Candelmo, and L. Bergey for general assistance, and especially two anonymous reviewers for providing invaluable suggestions on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. MacDonald.

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacDonald, J.A., Glover, T. & Weis, J.S. The Impact of Mangrove Prop-Root Epibionts on Juvenile Reef Fishes: A Field Experiment Using Artificial Roots and Epifauna. Estuaries and Coasts 31, 981–993 (2008). https://doi.org/10.1007/s12237-008-9083-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-008-9083-2

Keywords

Navigation