Skip to main content
Log in

Do Spur-Throated Grasshoppers, Melanoplus spp. (Orthoptera: Acrididae), Exert Top-Down Control on Smooth Cordgrass Spartina alterniflora in Northern New England?

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Recently, strong top-down (consumer) control of cordgrass (Spartina alterniflora) has been demonstrated. Here, we manipulated the densities of cordgrass consumers, acridid grasshoppers (Melanoplus bivittatus and Melanoplus femurrubrum), to examine their impact on cordgrass in the Plum Island Estuary (PIE), MA, USA. After 1 month, there was no detectable effect of grasshopper density on S. alterniflora biomass and grasshoppers at the highest densities (34 individuals per square meter) consumed only ~14% of the standing stock biomass. However, significant impacts of grasshopper density on grazing damage were seen. For example, plant damage and scarring length increased by 160% and 6,156%, respectively, at the highest grasshopper densities relative to exclusion (zero grasshoppers) densities. Plant height was significantly reduced with increasing grasshopper densities, although this may be a function of leaf tip removal instead of reduced plant growth. No other strong consumers of cordgrass (e.g., Littoraria irrorata, Prokelisia marginata) were observed in PIE and we suggest that consumer regulation of cordgrass is weak in this system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baldwin, I.T. 1998. Jasmonate-induced responses are costly but benefit plants under attack in native populations. Proceedings of the National Academy of Sciences of the United States of America 95: 8113–8118. doi:10.1073/pnas.95.14.8113.

    Article  CAS  Google Scholar 

  • Barimo, J.F., and D.R. Young. 2002. Grasshopper (Orthoptera: Acrididae)–plant–environmental interactions in relation to zonation on an Atlantic Coast barrier island. Environmental Entomology 31: 1158–1167.

    Article  Google Scholar 

  • Beckerman, A.P. 2002. The distribution of Melanoplus femurrubrum: fear and freezing in Connecticut. Oikos 99: 131–140. doi:10.1034/j.1600-0706.2002.990113.x.

    Article  Google Scholar 

  • Belovsky, G.E., and J.B. Slade. 1995. Dynamics of some Montana grasshopper populations: relationships among weather, food abundance and intraspecific competition. Oecologia 101: 383–396. doi:10.1007/BF00328826.

    Article  Google Scholar 

  • Belovsky, G.E., and J.B. Slade. 2000. Insect herbivory accelerates nutrient cycling and increases plant production. Proceedings of the National Academy of Sciences of the United States of America 97: 14412–14417. doi:10.1073/pnas.250483797.

    Article  CAS  Google Scholar 

  • Bertness, M.D., and S.W. Shumway. 1992. Consumer driven pollen limitation of seed production in marsh grasses. American Journal of Botany 79: 288–293. doi:10.2307/2445017.

    Article  Google Scholar 

  • Bertness, M.D., C. Crain, C. Holdredge, and N. Sala. 2008. Eutrophication and consumer control of New England salt marsh primary productivity. Conservation Biology 22: 131–139. doi:10.1111/j.1523-1739.2007.00801.x.

    Article  Google Scholar 

  • Cebrian, J., and J. Lartigue. 2004. Patterns of herbivory and decomposition in aquatic and terrestrial ecosystems. Ecological Monographs 74: 237–259. doi:10.1890/03-4019.

    Article  Google Scholar 

  • Chase, J.M. 1996. Varying resource abundances and competitive dynamics. American Naturalist 147: 649–654. doi:10.1086/285871.

    Article  Google Scholar 

  • Daehler, C.C., and D.R. Strong. 1995. Impact of high herbivore densities on introduced smooth cordgrass, Spartina alterniflora, invading San Francisco Bay, California. Estuaries 18: 409–417. doi:10.2307/1352323.

    Article  Google Scholar 

  • Daehler, C.C., and D.R. Strong. 1997. Reduced herbivory resistance in introduced smooth cordgrass (Spartina alterniflora) after a century of herbivory-free growth. Oecologia 110: 99–108. doi:10.1007/s004420050138.

    Article  Google Scholar 

  • Davis, L.V., and I.E. Gray. 1966. Zonal and seasonal distribution of insects in North Carolina salt marshes. Ecological Monographs 36: 275–295. doi:10.2307/1942419.

    Article  Google Scholar 

  • Deegan, L.A., J.L. Bowen, D. Drake, J.W. Fleeger, C.T. Friedrichs, K.A. Galván, J.E. Hobbie, C. Hopkinson, J.M. Johnson, D.S. Johnson, L.E. Lemay, E. Miller, B.J. Peterson, C. Picard, S. Sheldon, J. Vallino, and R.S. Warren. 2007. Susceptibility of salt marshes to nutrient enrichment and predator removal. Ecological Applications 17: S42–S63. doi:10.1890/06-0452.1.

    Article  Google Scholar 

  • Denno, R.F., C. Gratton, M.A. Peterson, G.A. Langellotto, D.L. Finke, and A.F. Huberty. 2002. Bottom-up forces mediate natural-enemy impact in a phytophagous insect community. Ecology 83: 1443–1458.

    Google Scholar 

  • Denno, R.F., C. Gratton, H. Döbel, and D.L. Finke. 2003. Predation risk affects relative strength of top-down and bottom-up impacts on insect herbivores. Ecology 84: 1032–1044. doi:10.1890/0012-9658(2003)084[1032:PRARSO]2.0.CO;2.

    Article  Google Scholar 

  • Drake, D.C., B.J. Peterson, L.A. Deegan, L.A. Harris, E.E. Miller, and R.S. Warren. 2008. Plant nitrogen dynamics in fertilized and natural New England salt marshes: a paired N-15 tracer study. Marine Ecology Progress Series 354: 35–46. doi:10.3354/meps07170.

    Article  CAS  Google Scholar 

  • Finke, D.L., and R.F. Denno. 2004. Predator diversity dampens trophic cascades. Nature 429: 407–410. doi:10.1038/nature02554.

    Article  CAS  Google Scholar 

  • Fleeger, J.W., D.S. Johnson, K.A. Galván, and L.A. Deegan. 2008. Top-down and bottom-up control of infauna varies across the salt marsh landscape. Journal of Experimental Marine Biology and Ecology 357: 20–34. doi:10.1016/j.jembe.2007.12.003.

    Article  CAS  Google Scholar 

  • Goranson, C.E., C.-K. Ho, and S.C. Pennings. 2004. Environmental gradients and herbivore feeding preferences in coastal salt marshes. Oecologia 140: 591–600. doi:10.1007/s00442-004-1615-2.

    Article  Google Scholar 

  • Gustafson, D.J., J. Kilheffer, and B.R. Silliman. 2006. Relative effects of Littoraria irrorata and Prokelisia marginata on Spartina alterniflora. Estuaries and Coasts 29: 639–644.

    Google Scholar 

  • McFarlin, C.R., J.S. Brewer, T.L. Buck, and S.C. Pennings. 2008. Impact of fertilization on a salt marsh food web in Georgia. Estuaries and Coasts 31: 313–325.

    Google Scholar 

  • McGoff, N.M. 2004. The influence of the marsh grasshopper, Orchelimum fidicinium on nutrient cycling and productivity of Spartina alterniflora in a salt marsh environment. M.S. Thesis, University of Virginia, Charlottesville, Virginia.

  • Mendelssohn, I.A., and J.T. Morris. 2000. Ecophysiological controls on the growth of Spartina alterniflora. In Concepts and controversies in tidal marsh ecology, eds. M. P. Weinstein, and D. A. Kreeger, 59–80. Dordrecht: Kluwer.

    Google Scholar 

  • Mitsch, W.J., and J.G. Gosselink. 2000. Wetlands. 4New York: Van Nostrand Reinhold.

    Google Scholar 

  • Odum, E.P., and A. del la Cruz. 1967. Estuaries 383–385. ed. G.H. Lauff. Am. Assoc. Adv. Sci. Publ. 83.

  • Onsager, J.A., and J.E. Henry. 1977. A method for estimating the density of rangeland grasshoppers (Orthoptera: Acrididae) in experimental plots. Acrida 6: 231–237.

    Google Scholar 

  • Pennings, S.C., and M.D. Bertness. 2001. Salt marsh communities. In Marine community ecology, eds. M. D. Bertness, , S. D. Gaines, and M. E. Hay, 289–316. Sunderland: Sinauer.

    Google Scholar 

  • Pennings, S.C., and B.R. Silliman. 2005. Linking biogeography and community ecology: latitudinal variation in plant-herbivore interaction strength. Ecology 86: 2310–2319. doi:10.1890/04-1022.

    Article  Google Scholar 

  • Pennings, S.C., E.L. Siska, and M.D. Bertness. 2001. Latitudinal differences in plant palatability in Atlantic Coast salt marshes. Ecology 82: 1344–1359.

    Google Scholar 

  • Pennings, S.C., M. Zimmer, N. Dias, M. Sprung, N. Dave, C.-K. Ho, A. Kunza, C. McFarlin, M. Mews, A. Pfauder, and C. Salgado. 2007. Latitudinal variation in plant–herbivore interactions in European salt marshes. Oikos 116: 543–549.

    Google Scholar 

  • Porter, E.E., R.A. Redak, and H.E. Braker. 1996. Density, biomass, and diversity of grasshoppers (Orthoptera: Acrididae) in a California native grassland. Great Basin Naturalist 56: 172–176.

    Google Scholar 

  • Schmitz, O.J., A.P. Beckerman, and K. O’Brien. 1997. Behaviorally-mediated trophic cascades: effects of predation risk on food web interactions. Ecology 78: 1388–1399.

    Google Scholar 

  • Silliman, B.R., and M.D. Bertness. 2002. A trophic cascade regulates salt marsh primary production. Proceedings of the National Academy of Sciences 99: 10500–10505. doi:10.1073/pnas.162366599.

    Article  CAS  Google Scholar 

  • Silliman, B.R., and A. Bortolus. 2003. Underestimation of Spartina production in western Atlantic salt marshes: marsh invertebrates eat more than just detritus. Oikos 101: 549–555. doi:10.1034/j.1600-0706.2003.12070.x.

    Article  Google Scholar 

  • Silliman, B.R., and J.C. Zieman. 2001. Top-down control of Spartina alterniflora growth by periwinkle grazing in a Virginia salt marsh. Ecology 82: 2830–2845.

    Google Scholar 

  • Siska, E.L., S.C. Pennings, T.L. Buck, and M.D. Hanisak. 2002. Latitudinal variation in palatability of salt marsh plants: which traits are responsible? Ecology 83: 3369–3381.

    Article  Google Scholar 

  • Smalley, A.E. 1960. Energy flow of a salt marsh grasshopper population. Ecology 41: 672–677. doi:10.2307/1931800.

    Article  Google Scholar 

  • Smith, T.J. III, and W.E. Odum. 1981. The effects of grazing by snow geese on coastal salt marshes. Ecology 62: 98–106.

    Article  Google Scholar 

  • Strauss, S.Y., J.A. Rudgers, J.A. Lau, and R.E. Irwin. 2002. Direct and ecological costs of resistance to herbivory. Trends in Ecology and Evolution 17: 278–285. doi:10.1016/S0169-5347(02)02483-7.

    Article  Google Scholar 

  • Teal, J.M. 1962. Energy flow in the salt marsh ecosystem of Georgia. Ecology 43: 614–624.

    Article  Google Scholar 

  • Toth, G.B., M. Karlsson, and H. Pavia. 2007. Mesoherbivores reduce net growth and induce chemical resistance in natural seaweed populations. Oecologia 152: 245–255. doi:10.1007/s00442-006-0643-5.

    Article  Google Scholar 

  • Tyrell, M.C., M. Dionne, and J.A. Edgerly. 2008. Physical factors mediate effects of grazing by a non-indigenous snail species on salt marsh cordgrass (Spartina alterniflora) in New England marshes. ICES Journal of Marine Science 65: 746–752.

    Article  Google Scholar 

  • Valiela, I. 1995. Marine ecological processes. 2New York: Springer.

    Google Scholar 

  • Vince, S.W., I. Valiela, and J.M. Teal. 1981. An experimental study of the structure of herbivorous insect communities in a salt marsh. Ecology 62: 1662–1678. doi:10.2307/1941520.

    Article  Google Scholar 

  • Wason, E.L., and S. Pennings. 2008. Grasshopper (Orthoptera: Tettigoniidae) species composition and size across latitude in Atlantic coast salt marshes. Estuaries and Coasts 31: 335–343.

    Article  Google Scholar 

Download references

Acknowledgements

We thank C. Kennedy and C. E. Goranson for field assistance. J.W. Fleeger, M.A. Grippo, K.A. Galván, R. S. Warren, and three anonymous reviewers provided helpful manuscript comments. This work was supported in part by the National Science Foundation under Grants No. 0213767 and 9726921.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Samuel Johnson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, D.S., Jessen, B.J. Do Spur-Throated Grasshoppers, Melanoplus spp. (Orthoptera: Acrididae), Exert Top-Down Control on Smooth Cordgrass Spartina alterniflora in Northern New England?. Estuaries and Coasts 31, 912–919 (2008). https://doi.org/10.1007/s12237-008-9074-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-008-9074-3

Keywords

Navigation