Advertisement

American Journal of Potato Research

, Volume 96, Issue 3, pp 272–284 | Cite as

Effect of Diverse Compost Products on Potato Yield and Nutrient Availability

  • Carolyn Wilson
  • Bernie J. ZebarthEmail author
  • David L. Burton
  • Claudia Goyer
  • Gilles Moreau
  • Tom Dixon
Article

Abstract

Compost application to agricultural fields can increase soil organic matter content and soil productivity. This study compared diverse compost products with a non-amended control in small plot and on-farm trials for effects on tuber yield and plant nutrient availability under rain-fed potato production in New Brunswick, Canada. In the small plot trial, mature compost products resulted in a small increase in plant N availability, whereas immature products resulted in net N immobilization. Composts high in K increased plant K availability. However, these effects on nutrient availability did not result in a significant effect on tuber yield. In on-farm trials, compost did not significantly increase yield averaged across 19 site-years of trials. This suggests that any short-term nutrient benefit from application of these wood waste and manure based composts is unlikely to influence crop yield, although there may be the potential to reduce nutrient application rates, particularly for K.

Keywords

Nitrogen Phosphorus Potassium Specific gravity 

Resumen

La aplicación de composta a los campos agrícolas puede aumentar el contenido de la materia orgánica del suelo y su productividad. En este estudio se compararon diversos productos de composta con un testigo sin ella en ensayos de lote pequeño y de campo para efecto de rendimiento de tubérculo y de disponibilidad de nutrientes para la planta bajo producción de papa de temporal (secano) en New Brunswick, Canadá. En el ensayo de lote pequeño los productos maduros de composta resultaron en un pequeño aumento en la disponibilidad del N en la planta, mientras que los productos inmaduros resultaron en inmovilización neta del N. Las compostas altas en K aumentaron su disponibilidad. No obstante, estos efectos en la disponibilidad de nutrientes no resultaron en un efecto significativo en rendimiento de tubérculo. En los ensayos de campo, la composta no aumentó significativamente el promedio de rendimiento a lo largo de 19 sitios-año de ensayos. Esto sugiere que cualquier beneficio nutrimental a corto plazo de la aplicación de estas compostas a base de desperdicios de madera y estiércol es improbable que influencie el rendimiento del cultivo, aunque debería de haber el potencial de reducir los niveles de aplicación de nutrientes, particularmente para K.

Notes

Acknowledgements

We would like to thank Ginette Decker, Yulia Kupriyanovich, Kyle McKinley, Karen Terry, and summer students at Agriculture and Agri-Food Canada for technical support. Funding contributions for this project were provided by Agriculture and Agri-Food Canada, National Science and Engineering Research Council, Enabling Agricultural Research and Innovation program of the New Brunswick Department of Agriculture and Aquaculture, McCain Foods (Canada) and Potatoes New Brunswick.

References

  1. Angers, D.A., L.M. Edwards, J.B. Sanderson, and N. Bissonnette. 1999. Soil organic matter quality and aggregate stability under eight potato cropping sequences in a fine sandy loam of Prince Edward Island. Canadian Journal of Soil Science 79: 411–417.CrossRefGoogle Scholar
  2. Bernard, G., S.K. Asiedu, and P. Boswall (ed.) 1993. Atlantic Canada potato guide. Atlantic provinces agricultural services coordinating committee, pub. No. 1300/93.Google Scholar
  3. Bernard, E., R.P. Larkin, S. Tavantzis, M.S. Erich, A. Alyokhin, and S.D. Gross. 2014. Rapeseed rotation, compost and biocontrol amendments reduce soilborne diseases and increase tuber yield in organic and conventional potato production systems. Plant and Soil 374: 611–627.CrossRefGoogle Scholar
  4. Carter, M.R., J.B. Sanderson, and J.A. MacLeod. 2004. Influence of compost on the physical properties and organic matter fractions of a fine sandy loam throughout the cycle of a potato rotation. Canadian Journal of Soil Science 84: 211–218.CrossRefGoogle Scholar
  5. Edgar, A.D. 1951. Determining the specific gravity of individual potatoes. American Potato Journal 28: 729–731.Google Scholar
  6. Fahmy, S.H., M. Sharifi, S.W. Hann, and T.L. Chow. 2010. Crop productivity and nutrient bioavailability in a potato-based three-year rotation as affected by composted pulp fiber residue application and supplemental irrigation. Communications in Soil Science and Plant Analysis 41: 744–756.CrossRefGoogle Scholar
  7. Gagnon, B., and R.R. Simard. 1999. Nitrogen and phosphorus release from on-farm and industrial composts. Canadian Journal of Soil Science 79: 481–489.CrossRefGoogle Scholar
  8. Gagnon, B., R.R. Simard, R. Robitaille, M. Goulet, and R. Rioux. 1997. Effect of composts and inorganic fertilizers on spring wheat growth and N uptake. Canadian Journal of Soil Science 77: 487–495.CrossRefGoogle Scholar
  9. Government of Canada. 2018. Historical Climate Data. [Online]. Available at http://climate.weather.gc.ca/. accessed 21 Oct. 2016; verified 12 Nov. 2018.
  10. Government of New Brunswick (GNB). 2001. Crop Fertilization Guide. [Online]. Available at https://www2.gnb.ca/content/dam/gnb/Departments/10/pdf/Agriculture/Fertilityguide2001.pdf. accessed 20 May 2015; verified 12 Nov. 2018.
  11. Grandy, A.S., G.A. Porter, and M.S. Erich. 2002. Organic amendment and rotation crop effects on the recovery of soil organic matter and aggregation in potato cropping systems. Soil Science Society of America Journal 66: 1311–1319.CrossRefGoogle Scholar
  12. Gregorich, E.G., M.H. Beare, U.F. McKim, and J.O. Skjemstad. 2006. Chemical and biological characteristics of physically uncomplexed organic matter. Soil Science Society of America Journal 70: 975–985.CrossRefGoogle Scholar
  13. Kroetsch, D., and C. Wang. 2007. Particle size distribution. In Soil sampling and methods of analysis, ed. M.R. Carter and E.G. Gregorich, 2nd ed., 713–725. Boca Raton: CRC Press.Google Scholar
  14. Laboski, C.A.M., and K.A. Kelling. 2007. Influence of fertilizer management and soil fertility on tuber specific gravity: A review. American Journal of Potato Research 84: 283–290.CrossRefGoogle Scholar
  15. LaMondia, J.A., M.P.N. Gent, F.J. Ferrandino, W.H. Elmer, and K.A. Stoner. 1999. Effect of compost amendment or straw mulch on potato early dying disease. Plant Disease 83: 361–366.CrossRefGoogle Scholar
  16. Larkin, R.P., C.W. Honeycutt, T.S. Griffin, O.M. Olanya, J.M. Halloran, and Z. He. 2011. Effects of different potato cropping system approaches and water management on soilborne diseases and soil microbial communities. Phytopathology 101: 58–67.CrossRefGoogle Scholar
  17. Lehrsch, G.A., B. Brown, R.D. Lentz, J.L. Johnson-Maynard, and A.B. Leytem. 2016. Winter and growing season nitrogen mineralization from fall-applied composted or stockpiled solid dairy manure. Nutrient Cycling in Agroecosystems 104: 125–142.CrossRefGoogle Scholar
  18. Lynch, D.H., R.P. Voroney, and P.R. Warman. 2004. Nitrogen availability from composts for humid region perennial grass and legume–grass forage production. Journal of Environmental Quality 33: 1509–1520.CrossRefGoogle Scholar
  19. Lynch, D.H., Z. Zheng, B.J. Zebarth, and R.C. Martin. 2008. Organic amendment effects on tuber yield, plant N uptake and soil mineral N under organic potato production. Renewable Agriculture and Food Systems 23: 250–259.CrossRefGoogle Scholar
  20. Lynch, D.H., M. Sharifi, A. Hammermeister, and D. Burton. 2012. Nitrogen management in organic potato production. In Sustainable potato production: Global case studies, ed. Z. He et al., 209–231. New York: Springer.CrossRefGoogle Scholar
  21. Milburn, P., J.A. MacLeod, and B. Sanderson. 1997. Control of fall nitrate leaching from early harvested potatoes on Prince Edward Island. Canadian Agricultural Engineering 39: 263–271.Google Scholar
  22. Miller, J.J., B.W. Beasley, C.F. Drury, and B.J. Zebarth. 2009. Barley yield and nutrient uptake for soil amended with fresh and composted cattle manure. Agronomy Journal 101: 1047–1059.CrossRefGoogle Scholar
  23. Panique, E., K.A. Kelling, E.E. Schulte, D.E. Hero, W.R. Stevenson, and R.V. James. 1997. Potassium rate and source effects on potato yield, quality, and disease interaction. Am. Potato J. 74: 379–398.CrossRefGoogle Scholar
  24. Porter, G.A., and J.A. Sisson. 1991. Petiole nitrate content of Maine-grown Russet Burbank and Shepody potatoes in response to varying nitrogen rate. American Potato Journal 68: 493–505.CrossRefGoogle Scholar
  25. Porter, G.A., W.B. Bradbury, J.A. Sisson, G.B. Opena, and J.C. McBurnie. 1999. Soil management and supplemental irrigation effects on potato: I. Soil properties, tuber yield, and quality. Agronomy Journal 91: 416–425.CrossRefGoogle Scholar
  26. Preusch, P.L., P.R. Adler, L.J. Sikora, and T.J. Tworkoski. 2002. Nitrogen and phosphorus availability in composted and uncomposted poultry litter. Journal of Environmental Quality 31: 2051–2057.CrossRefGoogle Scholar
  27. Rees, H.W., and S.H. Fahmy. 1984. Soils of the Agriculture Canada Research Station, Fredericton, New Brunswick. Land Resource Research Institute (LRRI), Research Branch. Agriculture Canada.Google Scholar
  28. Rosen, C.J., K.A. Kelling, J.C. Stark, and G.A. Porter. 2014. Optimizing phosphorus fertilizer management in potato production. American Journal of Potato Research 91: 145–160.CrossRefGoogle Scholar
  29. Sharifi, M., D.H. Lynch, B.J. Zebarth, Z. Zheng, and R.C. Martin. 2009. Evaluation of nitrogen supply rate measured by in situ placement of plant root simulator™ probes as a predictor of nitrogen supply from soil and organic amendments in potato crop. American Journal of Potato Research 86: 356–366.CrossRefGoogle Scholar
  30. Sharifi, M., D.H. Lynch, A. Hammermeister, D.L. Burton, and A.J. Messiga. 2014. Effect of green manure and supplemental fertility amendments on selected soil quality parameters in an organic potato rotation in eastern Canada. Nutrient Cycling in Agroecosystems 100: 135–146.CrossRefGoogle Scholar
  31. Skjemstad, J.O., and J.A. Baldock. 2007. Total and organic carbon. In Soil sampling and methods of analysis. 2nd ed. CRC press, ed. M.R. Carter and E.G. Gregorich, 225–237. Boca Raton: Florida.Google Scholar
  32. Stark, J.C., and G.A. Porter. 2005. Potato nutrient management in sustainable cropping systems. American Journal of Potato Research 82: 329–338.CrossRefGoogle Scholar
  33. Statistics Canada. 2018. Area, production and farm value of potatoes [online]. Available at https://www150.statcan.gc.ca/. Accessed 20 Sept. 2016; verified 12 Nov. 2018.
  34. Stukenholtz, P.D., R.T. Koenig, D.J. Hole, and B.E. Miller. 2002. Partitioning the nutrient and nonnutrient contributions of compost to dryland-organic wheat. Compost Science and Utilization 10: 238–243.CrossRefGoogle Scholar
  35. Wilson, C., B.J. Zebarth, C. Goyer, and D.L. Burton. 2018a. Effect of diverse compost products on soil-borne diseases of potato. Compost Science and Utilization.  https://doi.org/10.1080/1065657X.2018.1432430.
  36. Wilson, C., B.J. Zebarth, D.L. Burton, and C. Goyer. 2018b. Effect of diverse compost products on soil quality in potato production. Soil Science Society of America Journal 82: 889–900.CrossRefGoogle Scholar
  37. Zebarth, B.J., and P.H. Milburn. 2003. Spatial and temporal distribution of soil inorganic nitrogen concentration in potato hills. Canadian Journal of Soil Science 83: 183–195.CrossRefGoogle Scholar
  38. Zebarth, B.J., and C.J. Rosen. 2007. Research perspective on nitrogen BMP development for potato. American Journal of Potato Research 84: 3–18.CrossRefGoogle Scholar
  39. Zebarth, B.J., H. Rees, N. Tremblay, P. Fournier, and B. Leblon. 2003. Mapping spatial variation in potato nitrogen status using the N sensor. Acta Horticulturae 627: 267–273.CrossRefGoogle Scholar
  40. Zebarth, B.J., Y. Leclerc, G. Moreau, and E. Botha. 2004. Rate and timing of nitrogen fertilization of Russet Burbank potato: Yield and processing quality. Canadian Journal of Plant Science 84: 855–863.CrossRefGoogle Scholar
  41. Zebarth, B.J., Y. Leclerc, G. Moreau, J.B. Sanderson, W.J. Arsenault, E.J. Botha, and G. Wang-Pruski. 2005. Estimation of soil nitrogen supply in potato fields using a plant bioassay approach. Canadian Journal of Soil Science 85: 377–386.CrossRefGoogle Scholar
  42. Zebarth, B., C. Karemangingo, P. Scott, D. Savoie, and G. Moreau. 2007. Nitrogen Management for Potatoes: General fertilizer recommendations. [online]. Available at http://www.soilcc.ca/ggmp_fact_sheets/pdf/Potato_general_factsheet.pdf. Accessed 10 June 2014; verified12 Nov. 2018.
  43. Zebarth, B.J., C.F. Drury, N. Tremblay, and A.N. Cambouris. 2009. Opportunities for improved fertilizer nitrogen management in production of arable crops in eastern Canada: A review. Canadian Journal of Soil Science 89: 113–132.CrossRefGoogle Scholar
  44. Zebarth, B.J., G. Bélanger, A.N. Cambouris, and N. Ziadi. 2012. Nitrogen fertilization strategies in relation to potato tuber yield, quality, and crop N recovery. In Sustainable potato production: Global case studies, ed. Z. He et al., 165–186. New York: Springer.CrossRefGoogle Scholar

Copyright information

© The Potato Association of America 2019

Authors and Affiliations

  1. 1.Faculty of AgricultureDalhousie UniversityTruroCanada
  2. 2.Fredericton Research and Development CentreAgriculture and Agri-Food CanadaFrederictonCanada
  3. 3.McCain Foods (Canada) Ltd.Florenceville-BristolCanada

Personalised recommendations