Skip to main content
Log in

Potato nutrient management in sustainable cropping systems

  • Symposium Presentation Of The Potato Association Of America Production And Management Section
  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

Sustainable nutrient management involves a set of management practices designed to conserve soil resources, to maintain or enhance productivity, and to help reduce growers’ reliance on chemical fertilizers. Sustainable nutrient management systems will most certainly rely heavily on the use of legume rotation crops and/or organic soil amendments. To realize the full benefit to the crop ecosystem, sustainable nutrient management programs will also likely require longer crop rotations with less frequent potato production. There is considerable research evidence indicating that these systems can maintain or increase productivity while having positive impacts on nutrient supply, soil physical properties, and soil conservation. However, their successful adoption and continued use on a large scale will require resolution of uncertainties related to economic risk associated with inconsistent nutrient availability in alternative nutrient management systems, potential environmental risks associated with excessive P applications in animal manures, and the potential for increased potato pest incidence resulting from manure application.

Resumen

El manejo sostenible de nutrientes incluye un conjunto de practicas diseñadas para conservar los recursos del suelo, mantener o intensificar la productividad y ayudar a los agricultores a reducir la dependencia que tienen en los fertilizantes químicos. Los sistemas de manejo sostenible de nutrientes confía mayormente en el uso de leguminosas como cultivos de rotación y/o enmiendas orgánicas del suelo. Para darse cuenta del beneficio del ecosistema del cultivo, el programa de manejo sostenible de nutrientes requerirá de períodos más largos de rotación y de cultivos de papa menos frecuentes. Existe una considerable evidencia de investigación que indica que estos sistemas pueden mantener o incrementar la productividad y al mismo tiempo tienen un impacto positivo sobre el suministro de nutrientes, propiedades físicas del suelo y su conservación. Sin embargo, su completa adopción y uso continuado en gran escala requerirá de resolver ciertas dudas relacionadas con el riesgo económico asociado a la disponibilidad irregular de nutrientes en los sistemas de manejo alternativo, riesgos potenciales del medio ambiente asociados con una excesiva aplicación de fósforo contenido en el estiércol y el potencial para implementar la incidencia de enfermedades como resultado de la aplicación de estiércol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature cited

  • Alford AR, FA Drummond, ER Gallandt, E Groden, DA Lambert, M Liebman, MC Marra, JC McBurnie, GA Porter, and B Salas. 1996. The ecology, economics, and management of potato cropping systems: A report of the first four years of the Maine potato ecosystem project. Maine Agric Exp Stn Bulletin 843.

  • Angers DA, N Bissonette, A Legere, and N Samson. 1993. Microbial and biochemical changes induced by rotation and tillage in a soil under barley production. Can J Soil Sci 73:39–50.

    Google Scholar 

  • Angers DA, LM Edwards, JB Sanderson, and N Bissonette. 1999. Soil organic matter quality and aggregate stability under eight potato cropping sequences in a fine sandy loam of Prince Edward Island. Can J Soil Sci 79:411–417.

    Google Scholar 

  • Biederbeck VO, V Rasiah, CA Campbell, RP Zentner, and G Wen. 1998. Soil quality attributes as influenced by perennial forages used as green manure. Soil Biol Biochem 30:1177–1185.

    Article  CAS  Google Scholar 

  • Black WN, and RP White. 1973. Effects of N, phosphorus, potassium, and manure factorially applied to potatoes in a long-term study. Can J Soil Sci 53:205–211.

    CAS  Google Scholar 

  • Bragato G, and F Primavera. 1998. Manuring and soil type influence on spatial variation of soil organic matter properties. Soil Sci Soc Am J 62:1313–1319.

    CAS  Google Scholar 

  • Bullock DG. 1992. Crop rotation. Critical Rev. Plant Sci 11:309–326.

    Article  Google Scholar 

  • Bundy LG, TW, Andraski, and RP Wolkowski. 1993. Nitrogen credits in soybean-corn crop sequences in three soils. Agron J 85:1061–1067.

    CAS  Google Scholar 

  • Chaney K, and RS Swift. 1986. Studies on aggregate stability: II. The effect of humic substances on the stability of re-formed soil aggregates. J Soil Sci 37:337–343.

    Article  CAS  Google Scholar 

  • Edwards LM. 1988. The effects of slope position and cropping sequence on soil physical properties in Prince Edward Island. Can J Soil Sci 68:763–774.

    Google Scholar 

  • Emmond GS, and RJ Ledingham. 1972. Effects of crop rotation on some soil-borne pathogens of potato. Can.J Plant Sci 52:605–611.

    Google Scholar 

  • Erich MS, CB Fitzgerald, and GA Porter. 2002. Effect of organic amendments on phosphorus chemistry in a potato cropping system. Agric, Ecosyst, and Environ 88(1):79–88.

    Article  CAS  Google Scholar 

  • Fitzgerald CB. 1997. Soil phosphorus in Aroostook County (Maine) potato cropping systems: organic matter effects and residual soil phosphorus. MS thesis, University of Maine, Orono.

    Google Scholar 

  • Fox RH, and WP Piekielek. 1988. Fertilizer N equivalence of alfalfa, birdsfoot trefoil, and red clover for succeeding corn crops. J Prod Agric 1:313–317.

    Google Scholar 

  • Frankenberger WT, Jr. and HM Abdelmagid. 1985. Kinetic parameters of nitrogen mineralization rates of leguminous crops incorporated into soil. Plant Soil 87:257–271.

    Article  Google Scholar 

  • Gallandt ER, EB Mallory, AR Alford, FA Drummond, E Groden, M Liebman, MC Marra, JC McBurnie, and GA Porter. 1998. Comparison of alternative pest and soil management strategies for Maine potato production systems. Am J Alt Agric 13:146–161.

    Google Scholar 

  • Gasser MO, A N’Dayegamiye, and MR Laverdiere. 1995. Short-term effects of crop rotations and wood-residue amendments on potato yields and soil properties of a sandy loam soil. Can J Soil Sci 75:385–390.

    Google Scholar 

  • Grandy AS. 1998. Soil amendment, rotation crop and irrigation effects on soil physical and chemical properties in a potato cropping systems. MS thesis, University of Maine, Orono.

    Google Scholar 

  • Griffin TS, and OB Hesterman. 1991. Potato response to legume and fertilizer nitrogen sources. Agron J 83:1004–1012.

    Google Scholar 

  • Groffman PM, P Hendrix, and DA Crossley. 1987. Nitrogen dynamics in conventional and no-tillage agroecosystems with inorganic fertilizers or legume nitrogen inputs. Plant Soil 97:315–332.

    Article  CAS  Google Scholar 

  • Groya FL, and CC Sheaffer. 1985. Nitrogen from forage legumes: harvest and tillage effects. Agron J 77:105–109.

    Google Scholar 

  • Hesterman OB. 1988. Exploiting forage legumes for nitrogen contribution in cropping systems.In: JF Power (ed), Cropping Strategies for Efficient Use of Water and Nitrogen. ASA Spec Publ 51. ASA, CSSA, and SSSA, Madison, WI. pp 155–166.

    Google Scholar 

  • Honeycutt CW. 1999. Nitrogen mineralization from soil organic matter and crop residues: field validation of laboratory procedures. Soil Sci Soc Am J 63:134–141.

    CAS  Google Scholar 

  • Honeycutt CW. 1997. Quantifying total, N and non-N related crop rotation effects without 15N. Biol Agric Hort 14:125–137.

    Google Scholar 

  • Honeycutt CW. 1994. Linking N mineralization and plant N demand with thermal units. Soil testing: prospects for improving nutrient recommendations. Soil Sci Soc America Spec Publ 40, Madison, WI.

  • Honeycutt CW, WM Clapham, and SS Leach. 1995. Influence of crop rotation on selected chemical and physical properties in potato cropping systems. Am Potato J 72:721–735.

    Article  Google Scholar 

  • Honeycutt CW, and LJ Potaro. 1990. Field evaluation of heat units for predicting crop residue carbon and nitrogen mineralization. Plant Soil 125:213–220.

    Article  CAS  Google Scholar 

  • Huber DM, and RD Watson 1970. Effect of organic amendment on soilborne plant pathogens. Phytopathology 60:22–26.

    Article  Google Scholar 

  • Kuo S, EJ Jellum, and U Sainju. 1995. Effect of winter cover cropping on soil and water quality. Proc Western Nutrient Management Conference, Salt Lake City, Utah. pp 56–64.

  • Ladd JN, and M Amato. 1986. The fate of nitrogen from legume and fertilizer sources in soils successively cropped with wheat under field conditions. Soil Biol Biochem 18:417–425.

    Article  Google Scholar 

  • Lal R, AA Mahboubi, and NR Fausey. 1994. Long-term tillage and rotation effects on properties of a central Ohio soil. Soil Sci Soc Am J 58:517–522.

    Google Scholar 

  • Lory JA, MP Russelle, and TA Peterson. 1995. A comparison of two N credit methods: traditional versus difference. Agron J 87:648–651.

    Google Scholar 

  • Macrae RJ, and GR Mehuys. 1985. The effect of green manuring on the physical properties of temperate area soils. Adv Soil Sci 3:71–93.

    Google Scholar 

  • Martens DA, and WT Frankenburger Jr. 1992. Modification of infiltration rates in an organic-amended irrigated soil. Agron J 84:707–717.

    Google Scholar 

  • Meek BD, DL Carter, DT Westermann, and RE Peckenpaugh. 1994. Root zone mineral nitrogen changes as affected by crop sequence and tillage. Soil Sci Soc Am J 58:1464–1469.

    Google Scholar 

  • Meisinger JJ, WL Hargrove, RL Mikkelsen Jr., JR Williams, and VW Benson. 1991. Effects of cover crops on groundwater quality.In: WL Hargrove (ed), Cover Crops for Clean Water. Soil and Water Cons. Soc. Ankeny, IA. pp 57–68.

    Google Scholar 

  • Murphy HJ, PN Carpenter, and MJ Goven. 1967. Potato fertilizationrotation studies on Aroostock Farm permanent fertility plots 1951–1965. Maine Agr Expt Stn Bull 645.

  • Neeteson JJ. 1988. Effect of legumes on soil mineral nitrogen and response of potatoes to nitrogen fertilizer.In: J Vos, CD van Loon, and GJ Bollen (ed), Effects of Crop Rotation on Potato Production in the Temperate Zones. Kluwer Academic Publishers, Dordrecht, Netherlands. pp 89–93.

    Google Scholar 

  • Neeteson JJ, and HJC Zwetsloot. 1989. An analysis of the response of sugarbeet and potatoes to fertilizer N and soil mineral N. Neth J Agric Sci 37:129–141.

    Google Scholar 

  • Odland TE, and JE Sheehan. 1957. The effect of redtop and red clover on yields following crops of potatoes. Am Potato J 34:282–284.

    Article  Google Scholar 

  • Ojala JC, JC Stark, and GE Kleinkopf. 1990. Influence of irrigation and nitrogen management on potato yield and quality. Am Potato J 67:29–44.

    Google Scholar 

  • Opena GB, and GA Porter. 1999. Soil management and supplemental irrigation effects on potato: II. Root growth. Agron J 91:426–431.

    Google Scholar 

  • Paustian K, HP Collins, and EA Paul. 1997. Management controls on soil carbon.In: EA Paul et al. (eds), Soil Organic Matter in Temperate Agroecosystems. CRC Press, Boca Raton, FL. pp 15–49.

    Google Scholar 

  • Perfect E, BD Kay, WKP van Loon, RW Sheard, and T Pojasok. 1990. Rates of change in soil structural stability under forages and corn. Soil Sci Soc Am J 54:179–186.

    Google Scholar 

  • Plotkin J. 2000. The effect of green manure rotation crops on soils and potato yield and quality. MS thesis, University of Maine, Orono.

    Google Scholar 

  • Porter GA, GB Opena, WB Bradbury, JC McBurnie, and JA Sisson. 1999. Soil management and supplemental irrigation effects on potato: I. Soil properties, tuber yield, and quality. Agron J 91:416–425.

    Google Scholar 

  • Porter GA, and JA Sisson. 1991a. Response of Russet Burbank and Shepody potatoes to N fertilizer in two cropping systems. Am Potato J 68:425–443.

    Article  Google Scholar 

  • Porter GA, and JA Sisson. 1991b. Petiole nitrate content of Mainegrown Russet Burbank and Shepody potatoes in response to varying N rate. Am Potato J 68:493–505.

    Article  Google Scholar 

  • Radke JK, RW Andrews, RR Janke, and SE Peters. 1988. Low input cropping systems and efficiency of water and nitrogen use.In: WL Hargrove (ed), Cropping Strategies for Efficient Use of Water and Nitrogen. ASA Spec Publ 51. ASA, CSSA, and SSSA, Madison, WI. pp 193–218.

    Google Scholar 

  • Saini GR, and WJ Grant. 1980. Long-term effects of intensive cultivation on soil quality in the potato-growing areas of New Brunswick (Canada) and Maine (U.S.A.). Can J Soil Sci 60:421–428.

    Article  Google Scholar 

  • Sainju UM, and BP Singh. 1997. Winter cover crops for sustainable agricultural systems: influence on soil properties, water quality and crop yields. HortScience 32:21–28.

    Google Scholar 

  • Sharma UC, and BR Arora. 1986. Effect of N, phosphorus, and potassium application on yield of potato tubers. J Agric Sci 108:321–329.

    Article  Google Scholar 

  • Shennan C. 1992. Cover crops, nitrogen cycling, and soil properties in semi-irrigated vegetable production systems. HortScience 27:749–753.

    Google Scholar 

  • Smith MS, WW Frye, and JJ Varco. 1987. Legume winter cover crops. Adv Soil Sci 7:95–139.

    Google Scholar 

  • Stork NE, and P Eggleton. 1992. Invertebrates as determinants and indicators of soil quality. Am J Alt Agric 7:38–48.

    Google Scholar 

  • Tindall TT. 1991. Potato available nitrogen from barley/legume underseedings and reduced tillage/ridge tillage potatoes. MS thesis, University of Maine, Orono.

    Google Scholar 

  • Unger PW. 1992. Infiltration of simulated rainfall: tillage system and crop residue effects. Soil Sci Soc Am J 56:283–289.

    Google Scholar 

  • van Bruggen AHC. 1995. Plant disease severity in high-input compared to reduced-input and organic farming systems. Plant Dis 79:976–984.

    Google Scholar 

  • van Cingel EH. 1992. Nitrogen equivalence of rotation crops and its effect on potato yield and tuber maturation. MS thesis, University of Maine, Orono.

    Google Scholar 

  • Varis E, L Pietila, and K Koikkalainen. 1996. Comparison of conventional, integrated and organic potato production in field experiments in Finland. Acta Agric Scand 46:41–48.

    Google Scholar 

  • Visser S, and D Parkinson. 1992. Soil biological criteria and indicators of soil quality: soil microorganisms. Am J Alt Agric 7:33–38.

    Article  Google Scholar 

  • Westermann DT 1993. Fertility management.In: RC Rowe (ed), Potato Health Management. Amer. Phytopath. Soc., St. Paul, MN. pp 77–86.

    Google Scholar 

  • Westermann DT, and GE Kleinkopf. 1985. Nitrogen requirements of potatoes. Agron J 77:616–621.

    Google Scholar 

  • Westra JV, and KJBoyle. 1991. An economic analysis of crops grown in rotation with potatoes in Aroostook County, Maine. Maine Agric Expt Stn Bulletin 834.

  • Zielke RC, and DR Christenson. 1986. Organic carbon and nitrogen changes in soil under selected cropping systems.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Stark.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stark, J.C., Porter, G.A. Potato nutrient management in sustainable cropping systems. Am. J. Pot Res 82, 329–338 (2005). https://doi.org/10.1007/BF02871963

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02871963

Additional key words

Navigation