Skip to main content
Log in

Sequence-Specific Nucleases for Genetic Improvement of Potato

  • INVITED REVIEW
  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

Genome editing using sequence-specific nucleases (SSNs) is rapidly becoming a standard tool for genetic engineering in crop species. The implementation of zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and CRISPR/Cas (clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated systems (Cas)) for inducing double-strand breaks enables targeting of virtually any sequence for genetic modification. Targeted mutagenesis via nonhomologous end-joining (NHEJ) and gene targeting via homologous recombination (HR) have been demonstrated in a number of plant species but reports have been limited in vegetatively propagated crops, such as potato (Solanum tuberosum Group Tuberosum L.). This review provides a historical overview of genetic engineering in agriculture, applications of SSN technologies for genome editing in plant species, and prospects of using SSNs for genetic improvement of potato.

Resumen

La edición del genoma utilizando nucleasas de secuencias específicas (SSNs) se está volviendo rápidamente una herramienta común para ingeniería genética en especies de cultivos. La implementación de nucleasas de dedos de zinc (ZFNs), nucleasas de efecto de activador de transcripción (TALENs) y CRISPR/Cas (agrupamientos de repeticiones cortas palindromicas regularmente interespaciadas (CRISPR)/sistemas asociados CRISPR (Cas)) para la inducción de rompimientos de doble cadena, permiten identificar objetivos de virtualmente cualquier secuencia para modificación genética. Se ha demostrado en un número de especies de plantas mutagénesis como objetivo vía unión de extremo no homóloga (NHEJ) y gene-objetivo vía recombinación homóloga (HR), pero los reportes son limitados a cultivos propagados vegetativamente, como la papa (Solanum tuberosum Grupo Tuberosum). Esta revisión proporciona una vista general histórica de ingeniería genética en agricultura, aplicaciones de tecnologías SSN para la edición de genomas en especies vegetales, y las perspectivas del uso SSNs para el mejoramiento genético de la papa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ainley, W.M., L. Sastry-Dent, M.E. Welter, M.G. Murray, B. Zeitler, R. Amora, D.R. Corbin, et al. 2013. Trait stacking via targeted genome editing. Plant Biotechnology Journal 11: 1126–1134.

    Article  CAS  PubMed  Google Scholar 

  • Ali, Z., A. Abul-faraj, L. Li, N. Ghosh, M. Piatek, A. Mahjoub, M. Aouida, et al. 2015. Efficient virus-mediated genome editing in plants using the CRISPR/Cas9 system. Molecular Plant 8: 1288–1291.

    Article  CAS  PubMed  Google Scholar 

  • Alonso, J.M., A.N. Stepanova, T.J. Leisse, C.J. Kim, H. Chen, P. Shinn, D.K. Stevenson, et al. 2003. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301: 653–657.

    Article  PubMed  Google Scholar 

  • Anders, C., O. Niewoehner, A. Duerst, and M. Jinek. 2014. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513: 569–573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersen, M.M., X. Landes, W. Xiang, A. Anyshchenko, J. Falhof, J.T. Østerberg, L.I. Olsen, et al. 2015. Feasibility of new breeding techniques for organic farming. Trends in Plant Science 20: 426–434.

    Article  CAS  PubMed  Google Scholar 

  • Antunes, M.S., J.J. Smith, D. Jantz, and J.I. Medford. 2012. Targeted DNA excision in Arabidopsis by a re-engineered homing endonuclease. BMC Biotechnology 12: 1–12.

    Article  CAS  Google Scholar 

  • Baker, M. 2011. Method of the year 2011. Nature Methods 9: 1.

    Article  CAS  Google Scholar 

  • Baltes, N.J., J. Gil-Humanes, T. Cermak, P.A. Atkins, and D.F. Voytas. 2014. DNA replicons for plant genome engineering. The Plant Cell 26: 151–163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banerjee, A.K., S. Prat, and D.J. Hannapel. 2006. Efficient production of transgenic potato (S. tuberosum L. ssp. andigena) plants via Agrobacterium tumefaciens-mediated transformation. Plant Science 170: 732–738.

    Article  CAS  Google Scholar 

  • Barampuram, S., and Z.J. Zhang. 2011. Recent advances in plant transformation. Methods in Molecular Biology 701: 1–35.

    Article  CAS  PubMed  Google Scholar 

  • Barrangou, R., C. Fremaux, H. Deveau, M. Richards, P. Boyaval, S. Moineau, D.A. Romero, and P. Horvath. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315: 1709–1712.

    Article  CAS  PubMed  Google Scholar 

  • Barton, K.A., A.N. Binns, A.J. Matzke, and M.D. Chilton. 1983. Regeneration of intact tobacco plants containing full length copies of genetically engineered T-DNA, and transmission of T-DNA to R1 progeny. Cell 32: 1033–1043.

    Article  CAS  PubMed  Google Scholar 

  • Bedell, V.M., Y. Wang, J.M. Campbell, T.L. Poshusta, C.G. Starker, R.G. Krug II, W. Tan, et al. 2012. In vivo genome editing using a high-efficiency TALEN system. Nature 491: 114–118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belfort, M., and P.S. Perlman. 1995. Mechanisms of intron mobility. Journal of Biological Chemistry 270: 30237–30240.

    Article  CAS  PubMed  Google Scholar 

  • Belhaj, K., A. Chaparro-Garcia, S. Kamoun, and V. Nekrasov. 2013. Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods 9: 39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bhaskar, P.B., L. Wu, J.S. Busse, B.R. Whitty, A.J. Hamernik, S.H. Jansky, C.R. Buell, P.C. Bethke, and J. Jiang. 2010. Suppression of the vacuolar invertase gene prevents cold-induced sweetening in potato. Plant Physiology 154: 939–948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birhman, R.K., and K. Hosaka. 2000. Production of inbred progenies of diploid potatoes using an S-locus inhibitor (Sli) gene, and their characterization. Genome 43: 495–502.

    Article  CAS  PubMed  Google Scholar 

  • Bitinaite, J., D.A. Wah, A.K. Aggarwal, and I. Schildkraut. 1998. FokI dimerization is required for DNA cleavage. PNAS 95: 10570–10575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boch, J., H. Scholze, S. Schornack, A. Landgraf, S. Hahn, S. Kay, T. Lahaye, A. Nickstadt, and U. Bonas. 2009. Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326: 1509–1512.

    Article  CAS  PubMed  Google Scholar 

  • Bolotin, A., B. Quinquis, A. Sorokin, and S.D. Ehrlich. 2005. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151: 2551–2561.

    Article  CAS  PubMed  Google Scholar 

  • Borlaug, N.E. 2000. Ending world hunger. the promise of biotechnology and the threat of antiscience zealotry. Plant Physiology 124: 487–490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brigneti, G., A.M. Martín-Hernández, H. Jin, J. Chen, D.C. Baulcombe, B. Baker, and J.D.G. Jones. 2004. Virus-induced gene silencing in solanum species. The Plant Journal 39: 264–272.

    Article  CAS  PubMed  Google Scholar 

  • Broitman, S.L., D.D. Im, and J.R. Fresco. 1987. Formation of the triple-stranded polynucleotide helix, poly(A.A.U). PNAS 84: 5120–5124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brooks, C., V. Nekrasov, Z.B. Lippman, and J.V. Eck. 2014. Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system. Plant Physiology 166: 1292–1297.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brouns, S.J.J., M.M. Jore, M. Lundgren, E.R. Westra, R.J.H. Slijkhuis, A.P.L. Snijders, M.J. Dickman, K.S. Makarova, E.V. Koonin, and J. van der Oost. 2008. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321: 960–964.

    Article  CAS  PubMed  Google Scholar 

  • Butler, N.M., P.A. Atkins, D.F. Voytas, and D.S. Douches. 2015. Generation and inheritance of targeted mutations in potato (Solanum tuberosum L.) using the CRISPR/Cas system. PloS One 10: e0144591.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Camacho, A., A.V. Deynze, C. Chi-Ham, and A.B. Bennett. 2014. Genetically engineered crops that fly under the US regulatory radar. Nature Biotechnology 32: 1087–1091.

    Article  CAS  PubMed  Google Scholar 

  • Carroll, D. 2004. Using nucleases to stimulate homologous recombination. Genetic Recombination 262: 195–208.

    Article  CAS  Google Scholar 

  • Carroll, D. 2011. Genome engineering with zinc-finger nucleases. Genetics 188: 773–782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cermak, T., E.L. Doyle, M. Christian, L. Wang, Y. Zhang, C. Schmidt, J.A. Baller, N.V. Somia, A.J. Bogdanove, and D.F. Voytas. 2011. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Research 39: e82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakravarty, B., G. Wang-Pruski, V. Gustafson, and S. Regan. 2007. Genetic transformation in potato: approaches and strategies. American Journal of Potato Research 84: 301–311.

    Article  CAS  Google Scholar 

  • Chan, Y.-S., D.S. Huen, R. Glauert, E. Whiteway, and S. Russell. 2013. Optimising homing endonuclease gene drive performance in a semi-refractory species: the Drosophila melanogaster experience. PloS One 8: e54130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Char, S.N., E. Unger-Wallace, B. Frame, S.A. Briggs, M. Main, M.H. Spalding, E. Vollbrecht, K. Wang, and B. Yang. 2015. Heritable site-specific mutagenesis using TALENs in maize. Plant Biotechnology Journal 13: 1002–1010.

    Article  CAS  PubMed  Google Scholar 

  • Chilton, M.D.M., and Q. Que. 2003. Targeted integration of T-DNA into the tobacco genome at double-stranded breaks: new insights on the mechanism of T-DNA integration. Plant Physiology 133: 956–965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho, J., M.E. Parks, and P.B. Dervan. 1995. Cyclic polyamides for recognition in the minor groove of DNA. PNAS 92: 10389–10392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christian, M., T. Cermak, E.L. Doyle, C. Schmidt, F. Zhang, A. Hummel, A.J. Bogdanove, and D.F. Voytas. 2010. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186: 757–761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christou, P. 2013. Plant genetic engineering and agricultural biotechnology 1983–2013. Trends in Biotechnology 31. Elsevier Ltd: 125–127.

  • Clasen, B.M., T.J. Stoddard, S. Luo, Z.L. Demorest, J. Li, F. Cedrone, R. Tibebu, et al. 2015. Improving cold storage and processing traits in potato through targeted gene knockout. Plant Biotechnology Journal. doi:10.1111/pbi.12370.

    Google Scholar 

  • Comai, Luca. 2005. The advantages and disadvantages of being polyploid. Nature Reviews Genetics 6: 836–846.

    Article  CAS  PubMed  Google Scholar 

  • Cong, L., F.A. Ran, D. Cox, S. Lin, R. Barretto, N. Habib, P.D. Hsu, et al. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339: 819–823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cornu, T.I., S. Thibodeau-Beganny, E. Guhl, S. Alwin, M. Eichtinger, J.K. Joung, and T. Cathomen. 2008. DNA-binding specificity is a major determinant of the activity and toxicity of zinc-finger nucleases. Molecular Therapy 16: 352–358.

    Article  CAS  PubMed  Google Scholar 

  • Cui, L., P.K. Wall, J.H. Leebens-Mack, B.G. Lindsay, D.E. Soltis, J.J. Doyle, P.S. Soltis, et al. 2006. Widespread genome duplications throughout the history of flowering plants. Genome Research 16: 738–749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curtin, S.J., F. Zhang, J.D. Sander, W.J. Haun, C. Starker, N.J. Baltes, D. Reyon, et al. 2011. Targeted mutagenesis of duplicated genes in soybean with zinc-finger nucleases. Plant Physiology 156: 466–473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curtin, S.J., D.F. Voytas, and R.M. Stupar. 2012. Genome engineering of crops with designer nucleases. The Plant Genome Journal 5: 42–50.

    Article  CAS  Google Scholar 

  • Cyranoski, D. 2015. Ethics of embryo editing divides scientists. Nature 519: 272–272.

    Article  CAS  PubMed  Google Scholar 

  • D’Halluin, K., C. Vanderstraeten, J.V. Hulle, J. Rosolowska, I.V.D. Brande, A. Pennewaert, K. D’Hont, et al. 2013. Targeted molecular trait stacking in cotton through targeted double-strand break induction. Plant Biotechnology Journal 11: 933–941.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dale, M., B. Finlay, and J.E. Bradshaw. 2003. Progress in improving processing attributes in potato. Trends in Plant Science 8: 310–312.

    Article  CAS  PubMed  Google Scholar 

  • Davey, M.R., P. Anthony, J.B. Power, and K.C. Lowe. 2005. Plant protoplasts: status and biotechnological perspectives. Biotechnology Advances 23: 131–171.

    Article  CAS  PubMed  Google Scholar 

  • De Jong, H., and P.R. Rowe. 1971. Inbreeding in cultivated diploid potatoes. Potato Research 14: 74–83.

    Article  Google Scholar 

  • Deltcheva, E., K. Chylinski, C.M. Sharma, K. Gonzales, Y. Chao, Z.A. Pirzada, M.R. Eckert, J. Vogel, and E. Charpentier. 2011. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471: 602–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng, D., C. Yan, X. Pan, M. Mahfouz, J. Wang, J.-K. Zhu, Y. Shi, and N. Yan. 2012. Structural basis for sequence-specific recognition of DNA by TAL effectors. Science 335: 720–723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deveau, H., R. Barrangou, J.E. Garneau, J. Labonté, C. Fremaux, P. Boyaval, D.A. Romero, P. Horvath, and S. Moineau. 2008. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. Journal of Bacteriology 190: 1390–1400.

    Article  CAS  PubMed  Google Scholar 

  • Doudna, J.A., and E. Charpentier. 2014. The new frontier of genome engineering with CRISPR-Cas9. Science 346: 1077–1093.

    Article  CAS  Google Scholar 

  • Doyle, E.L., N.J. Booher, D.S. Standage, D.F. Voytas, V.P. Brendel, J.K. Vandyk, and A.J. Bogdanove. 2012. TAL Effector-Nucleotide targeter (TALE-NT) 2.0: tools for TAL effector design and target prediction. Nucleic Acids Research 40: 117–122.

    Article  CAS  Google Scholar 

  • Doyle, E.L., B.L. Stoddard, D.F. Voytas, and A.J. Bogdanove. 2013. TAL effectors: highly adaptable phytobacterial virulence factors and readily engineered DNA-targeting proteins. Trends in Cell Biology 23: 390–398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellis, B.L., M.L. Hirsch, S.N. Porter, R.J. Samulski, and M.H. Porteus. 2013. Zinc-finger nuclease-mediated gene correction using single AAV vector transduction and enhancement by Food and Drug Administration-approved drugs. Gene Therapy 20: 35–42.

    Article  CAS  PubMed  Google Scholar 

  • Endelman, J.B. and S.H. Jansky. 2016. Genetic mapping with an inbred line-derived F2 population in potato. Theoretical and Applied Genetics. doi:10.1007/s00122-016-2673-7.

  • Esvelt, K.M., P. Mali, J.L. Braff, M. Moosburner, S.J. Yaung, and G.M. Church. 2013. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nature Methods 10: 1116–1123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fauser, F., N. Roth, M. Pacher, G. Ilg, R. Sánchez-Fernández, C. Biesgen, and H. Puchta. 2012. In planta gene targeting. PNAS 109: 7535–7540.

  • Feng, Z., Y. Mao, N. Xu, B. Zhang, P. Wei, D.-L. Yang, Z. Wang, et al. 2014. Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis. PNAS 111: 4632–4637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freeman, J.P., J. Draper, M.R. Davey, E.C. Cocking, K.M. Gartland, K. Harding, and D. Pental. 1984. A comparison of methods for plasmid delivery into plant protoplasts. Plant & Cell Physiology 25: 1353–1365.

    CAS  Google Scholar 

  • Fu, Y., J.D. Sander, D. Reyon, V.M. Cascio, and J.K. Joung. 2014. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nature Biotechnology 32: 279–284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaj, T., A.C. Mercer, S.J. Sirk, H.L. Smith, and C.F. Barbas. 2013. A comprehensive approach to zinc-finger recombinase customization enables genomic targeting in human cells. Nucleic Acids Research 41: 3937–3946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gantz, V.M., and E. Bier. 2015. The mutagenic chain reaction: A method for converting heterozygous to homozygous mutations. Science 348: 442–444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao, H., J. Smith, M. Yang, S. Jones, V. Djukanovic, M.G. Nicholson, A. West, et al. 2010. Heritable targeted mutagenesis in maize using a designed endonuclease. The Plant Journal 61: 176–187.

    Article  CAS  PubMed  Google Scholar 

  • Garneau, J.E., M.-È. Dupuis, M. Villion, D.A. Romero, R. Barrangou, P. Boyaval, C. Fremaux, P. Horvath, A.H. Magadán, and S. Moineau. 2010. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468: 67–71.

    Article  CAS  PubMed  Google Scholar 

  • Gasiunas, G., R. Barrangou, P. Horvath, and V. Siksnys. 2012. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. PNAS 109: E2579–E2586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorbunova, V., and A.A. Levy. 1999. How plants make ends meet: DNA double-strand break repair. Trends in Plant Science 4: 263–269.

    Article  PubMed  Google Scholar 

  • Grizot, S., A. Duclert, S. Thomas, P. Duchateau, and F. Pâques. 2011. Context dependence between subdomains in the DNA binding interface of the I-CreI homing endonuclease. Nucleic Acids Research 39: 6124–6136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haft, D.H., J. Selengut, E.F. Mongodin, and K.E. Nelson. 2005. A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/cas subtypes exist in prokaryotic genomes. PLoS Computational Biology 1: 474–483.

    Article  CAS  Google Scholar 

  • Hale, C.R., P. Zhao, S. Olson, M.O. Duff, B.R. Graveley, L. Wells, R.M. Terns, and M.P. Terns. 2009. RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell 139: 945–956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halterman, D., J. Guenthner, S. Collinge, N. Butler, and D. Douches. 2015. Biotech potatoes in the 21st century: 20 years since the first biotech potato. American Journal of Potato Research. doi:10.1007/s12230-015-9485-1.

    Google Scholar 

  • Hanneman, R.E. 1989. The potato germplasm resource. American Potato Journal 66: 655–667.

    Article  Google Scholar 

  • Herrera-Estrella, L., A. Depicker, M. Van Montagu, and J. Schell. 1983. Expression of chimaeric genes transferred into plant cells using a Ti-plasmid-derived vector. Nature 303: 209–213.

    Article  CAS  Google Scholar 

  • Hirsch, C.N., C.D. Hirsch, K. Felcher, J. Coombs, D. Zarka, A.V. Deynze, W. De Jong, et al. 2013. Retrospective view of North American potato (Solanum tuberosum L.) breeding in the 20th and 21st centuries. G3 3: 1003–1013.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hirsch, C.D., J.P. Hamilton, K.L. Childs, J. Cepela, E. Crisovan, B. Vaillancourt, C.N. Hirsch, M. Habermann, B. Neal, and C.R. Buell. 2014. Spud DB: a resource for mining sequences, genotypes, and phenotypes to accelerate potato breeding. The Plant Genome 7: 1–12.

  • Hsu, P.D., E.S. Lander, and F. Zhang. 2014. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157: 1262–1278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunter, P. 2014. “Genetically modified lite” placates public but not activists: new technologies to manipulate plant genomes could help to overcome public concerns about GM crops. EMBO Reports 15: 138–141.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ishino, Y., H. Shinagawa, K. Makino, M. Amemura, and A. Nakata. 1987. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology 169: 5429–5433.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jacquier, A., and B. Dujon. 1985. An intron-encoded protein is active in a gene conversion process that spreads an intron into a mitochondrial gene. Cell 41: 383–394.

    Article  CAS  PubMed  Google Scholar 

  • James, C. 2014. Global status of commercialized biotech/GM Crops. ISAAA Brief. Vol. 49.

  • Jansen, R., J.D.V. Embden, W. Gaastra, and L.M. Schouls. 2002. Identification of genes that are associated with DNA repeats in prokaryotes. Molecular Microbiology 43: 1565–1575.

    Article  CAS  PubMed  Google Scholar 

  • Jansky, S.H., Y.S. Chung, and P. Kittipadukal. 2014. M6: A diploid potato inbred line for use in breeding and genetics research. Journal of Plant Registrations 8: 195–199.

    Article  Google Scholar 

  • Jinek, M., K. Chylinski, I. Fonfara, M. Hauer, J.A. Doudna, and E. Charpentier. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337: 816–821.

    Article  CAS  PubMed  Google Scholar 

  • Jinek, M., F. Jiang, D.W. Taylor, S.H. Sternberg, E. Kaya, E. Ma, C. Anders, et al. 2014. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 343: 1247997.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Joung, K., D.F. Voytas, and T. Cathomen. 2010. Reply to “Successful genome editing with modularly assembled zinc finger nucleases. Nature Methods 7: 91–92.

    Article  CAS  PubMed Central  Google Scholar 

  • Juillerat, A., G. Dubois, J. Valton, S. Thomas, S. Stella, A. Maréchal, S. Langevin, et al. 2014. Comprehensive analysis of the specificity of transcription activator-like effector nucleases. Nucleic Acids Research 42: 5390–5402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juillerat, A., C. Pessereau, G. Dubois, V. Guyot, A. Maréchal, J. Valton, F. Daboussi, L. Poirot, A. Duclert, and P. Duchateau. 2015. Optimized tuning of TALEN specificity using non-conventional RVDs. Scientific Reports 5: 8150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jurica, M.S., R.J. Monnat, and B.L. Stoddard. 1998. DNA recognition and cleavage by the LAGLIDADG homing endonuclease I-CreI. Molecular Cell 2: 469–476.

    Article  CAS  PubMed  Google Scholar 

  • Kay, S., and U. Bonas. 2009. How Xanthomonas type III effectors manipulate the host plant. Current Opinion in Microbiology 12: 37–43.

    Article  CAS  PubMed  Google Scholar 

  • Kim, Y.G., and S. Chandrasegaran. 1994. Chimeric restriction endonuclease. PNAS 91: 883–887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, H., and J.-S. Kim. 2014. A guide to genome engineering with programmable nucleases. Nature Reviews Genetics 15: 321–334.

    Article  CAS  PubMed  Google Scholar 

  • Kim, Y.G., J. Cha, and S. Chandrasegaran. 1996. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. PNAS 93: 1156–1160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lanphier, E., F. Urnov, S.E. Haecker, M. Werner, and J. Smolenski. 2015. Don’t edit the human germ line. Nature 519: 410–411.

    Article  CAS  PubMed  Google Scholar 

  • Ledford, H. 2015. CRISPR, the disruptor. Nature 522: 20–24.

    Article  CAS  PubMed  Google Scholar 

  • Li, L., L.P. Wu, and S. Chandrasegaran. 1992. Functional domains in Fok I restriction endonuclease. PNAS 89: 4275–4279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, T., S. Huang, X. Zhao, D. Wright, S. Carpenter, M.H. Spalding, D.P. Weeks, and B. Yang. 2011a. Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic Acids Research 39: 6315–6325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, T., S. Huang, W.Z. Jiang, D. Wright, M.H. Spalding, D.P. Weeks, and B. Yang. 2011b. TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Research 39: 359–372.

    Article  PubMed  CAS  Google Scholar 

  • Li, T., B. Liu, M.H. Spalding, D.P. Weeks, and B. Yang. 2012. High-efficiency TALEN-based gene editing produces disease-resistant rice. Nature Biotechnology 30: 390–392.

    Article  CAS  PubMed  Google Scholar 

  • Li, J.F., J.E. Norville, J. Aach, M. McCormack, D. Zhang, J. Bush, G.M. Church, and J. Sheen. 2013. Multiplex and homologous recombination–mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nature Biotechnology 31: 688–691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang, Z., K. Zhang, K. Chen, and C. Gao. 2014. Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. Journal of Genetics and Genomics 41: 63–68.

    Article  CAS  PubMed  Google Scholar 

  • Liang, P., Y. Xu, X. Zhang, C. Ding, R. Huang, Z. Zhang, J. Lv, et al. 2015. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein & Cell 6: 363–372.

    Article  CAS  Google Scholar 

  • Lindhout, P., D. Meijer, T. Schotte, R.C.B. Hutten, R.G.F. Visser, and H.J. van Eck. 2011. Towards F1 hybrid seed potato breeding. Potato Research 54: 301–312.

    Article  Google Scholar 

  • Liu, L., T. Van Tonder, G. Pietersen, J.W. Davies, and J. Stanley. 1997. Molecular characterization of a subgroup I geminivirus from a legume in South Africa. Journal of General Virology 78: 2113–2117.

    Article  CAS  PubMed  Google Scholar 

  • Liu, L., J.W. Davies, and John Stanley. 1998. Mutational analysis of bean yellow dwarf virus, a geminivirus of the genus Mastrevirus that is adapted to dicotyledonous plants. Journal of General Virology 79: 2265–2274.

    Article  CAS  PubMed  Google Scholar 

  • Liu, W., J.S. Yuan, and C.N. Stewart. 2013. Advanced genetic tools for plant biotechnology. Nature Reviews Genetics 14: 781–793.

    Article  CAS  PubMed  Google Scholar 

  • Lloyd, A., C.L. Plaisier, D. Carroll, and G.N. Drews. 2005. Targeted mutagenesis using zinc-finger nucleases in Arabidopsis. PNAS 102: 2232–2237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lusser, M., C. Parisi, D. Plan, and E. Rodríguez-Cerezo. 2012. Deployment of new biotechnologies in plant breeding. Nature Biotechnology 30: 231–239.

    Article  CAS  PubMed  Google Scholar 

  • Maeder, M.L., S. Thibodeau-Beganny, A. Osiak, D. Wright, R.M. Anthony, M. Eichtinger, T. Jiang, et al. 2008. Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification. Molecular Therapy 31: 294–301.

    CAS  Google Scholar 

  • Maeseele, P. 2013. Risk conflicts, critical discourse analysis and media discourses on GM crops and food. Journalism 16: 278–297.

    Article  Google Scholar 

  • Mahfouz, M.M., L. Li, M. Shamimuzzaman, A. Wibowo, X. Fang, and J.-K. Zhu. 2011. De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks. PNAS 108: 2623–2628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mak, A.N.-S., P. Bradley, R.A. Cernadas, A.J. Bogdanove, and B.L. Stoddard. 2012. The crystal structure of TAL effector PthXo1 bound to its DNA target. Science 335: 716–719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mali, P., A. John, P.B. Stranges, K.M. Esvelt, M. Moosburner, S. Kosuri, L. Yang, and G.M. Church. 2013. Cas9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nature Biotechnology 31: 833–838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marton, I., A. Zuker, E. Shklarman, V. Zeevi, A. Tovkach, S. Roffe, M. Ovadis, T. Tzfira, and A. Vainstein. 2010. Nontransgenic genome modification in plant cells. Plant Physiology 154: 1079–1087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDougall, P. 2011. The cost and time involved in the discovery, development and authorisation of a new plant biotechnology derived trait. A Consultancy Study for Crop Life International.

  • Miller, J.C., M.C. Holmes, J. Wang, D.Y. Guschin, Y.-L. Lee, I. Rupniewski, C.M. Beausejour, et al. 2007. An improved zinc-finger nuclease architecture for highly specific genome editing. Nature Biotechnology 25: 778–785.

    Article  CAS  PubMed  Google Scholar 

  • Miller, J.C., S. Tan, G. Qiao, K.A. Barlow, J. Wang, D.F. Xia, X. Meng, et al. 2011. A TALE nuclease architecture for efficient genome editing. Nature Biotechnology 29: 143–148.

    Article  CAS  PubMed  Google Scholar 

  • Mao, Y., H. Zhang, N. Xu, B. Zhang, F. Gou, and J.-K. Zhu. 2013. Application of the CRISPR-Cas system for efficient genome engineering in plants. Molecular Plant 6: 2008–2011.

  • Mojica, F.J.M., C. Díez-Villaseñor, E. Soria, and G. Juez. 2000. Biological significance of a family of regularly spaced repeats in the genomes of archaea, bacteria and mitochondria. Molecular Microbiology 36: 244–246.

    Article  CAS  PubMed  Google Scholar 

  • Mojica, F.J.M., C. Díez-Villaseñor, J. García-Martínez, and E. Soria. 2005. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. Journal of Molecular Evolution 60: 174–182.

    Article  CAS  PubMed  Google Scholar 

  • Moscou, M.J., and A.J. Bogdanove. 2009. A simple cipher governs DNA recognition by TAL effectors. Science 326: 1501.

    Article  CAS  PubMed  Google Scholar 

  • Mussolino, C., R. Morbitzer, F. Lütge, N. Dannemann, T. Lahaye, and T. Cathomen. 2011. A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Research 39: 9283–9293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nekrasov, V., B. Staskawicz, D. Weigel, J.D. Jones, and S. Kamoun. 2013. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nature Biotechnology 31: 691–693.

    Article  CAS  PubMed  Google Scholar 

  • Netter, P., E. Petrochilo, P.P. Slonlmski, M. Bolotin-Fukuhara, D. Coen, and C. De Ginitique. 1974. Mitochondrial genetics VII. Allelism and mapping studies of ribosomal mutants resistant to chloramphenicol, erythromycin and spiramycin in S. cerevisiae. Genetics 78: 1063–1100.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nicolia, A., E. Proux-Wéra, I. Åhman, N. Onkokesung, M. Andersson, E. Andreasson, and L.-H. Zhu. 2015. Targeted gene mutation in tetraploid potato through transient TALEN expression in protoplasts. Journal of Biotechnology 204: 17–24.

    Article  CAS  PubMed  Google Scholar 

  • Nishimasu, H., F.A. Ran, P.D. Hsu, S. Konermann, S.I. Shehata, N. Dohmae, R. Ishitani, F. Zhang, and O. Nureki. 2014. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156: 935–949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noël, L.D., N. Denancé, and B. Szurek. 2013. Predicting promoters targeted by TAL effectors in plant genomes: from dream to reality. Frontiers in Plant Science 4: 333.

    Article  PubMed  PubMed Central  Google Scholar 

  • Orr-Weaver, T.L., J.W. Szostak, and R.J. Rothstein. 1981. Yeast transformation: a model system for the study of recombination. PNAS 78: 6354–6358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osakabe, K., Y. Osakabe, and S. Toki. 2011. Site-directed mutagenesis in Arabidopsis using custom-designed zinc finger nucleases. PNAS 108: 433–433.

    CAS  Google Scholar 

  • Pacher, M., W. Schmidt-Puchta, and H. Puchta. 2007. Two unlinked double-strand breaks can induce reciprocal exchanges in plant genomes via homologous recombination and nonhomologous end joining. Genetics 175: 21–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paszkowski, J., M. Baur, A. Bogucki, and I. Potrykus. 1988. Gene targeting in plants. The EMBO Journal 7: 4021–4026.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pavletich, N.P., and C. Pabo. 1991. Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 Å. Science 252: 809–817.

    Article  CAS  PubMed  Google Scholar 

  • Paz, M.M., and R.E. Veilleux. 1999. Influence of culture medium and in vitro conditions on shoot regeneration in Solanum phureja monoploids and fertility of regenerated doubled monoploids. Plant Breeding 118: 53–57.

    Article  CAS  Google Scholar 

  • Petolino, J.F. 2015. Genome editing in plants via designed zinc finger nucleases. In Vitro Cellular & Developmental Biology. Plant 51: 1–8.

    Article  CAS  Google Scholar 

  • Petolino, J.F., A. Worden, K. Curlee, J. Connell, T.L.S. Moynahan, C. Larsen, and S. Russell. 2010. Zinc finger nuclease-mediated transgene deletion. Plant Molecular Biology 73: 617–628.

    Article  CAS  PubMed  Google Scholar 

  • PGSC. 2011. Genome sequence and analysis of the tuber crop potato. Nature 475: 189–195.

    Article  CAS  Google Scholar 

  • Port, F., N. Muschalik, and S.L. Bullock. 2015. Systematic evaluation of Drosophila CRISPR tools reveals safe and robust alternatives to autonomous gene drives in basic research. G3 5: 1493–1502.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pruett-Miller, S.M., J.P. Connelly, M.L. Maeder, J.K. Joung, and M.H. Porteus. 2008. Comparison of zinc finger nucleases for use in gene targeting in mammalian cells. Molecular Therapy 16: 707–717.

    Article  CAS  PubMed  Google Scholar 

  • Puchta, H. 2005. The repair of double-strand breaks in plants: mechanisms and consequences for genome evolution. Journal of Experimental Botany 56: 1–14.

    Article  CAS  PubMed  Google Scholar 

  • Puchta, H., and F. Fauser. 2013. Synthetic nucleases for genome engineering in plants: prospects for a bright future. The Plant Journal: 1–15.

  • Puchta, H., B. Dujon, and B. Hohn. 1993. Homologous recombination in plant cells is enhanced by in vivo induction of double strand breaks into DNA by a site-specific endonuclease. Nucleic Acids Research 21: 5034–5040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puchta, H., B. Dujon, and B. Hohn. 1996. Two different but related mechanisms are used in plants for the repair of genomic double-strand breaks by homologous recombination. PNAS 93: 5055–5060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi, Y., X. Li, Y. Zhang, C.G. Starker, N.J. Baltes, F. Zhang, J.D. Sander, D. Reyon, J.K. Joung, and D.F. Voytas. 2013a. Targeted deletion and inversion of tandemly arrayed genes in Arabidopsis thaliana using zinc finger nucleases. G3 3: 1707–1715.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qi, Y., Y. Zhang, F. Zhang, J.A. Baller, S.C. Cleland, Y. Ryu, C.G. Starker, and D.F. Voytas. 2013b. Increasing frequencies of site-specific mutagenesis and gene targeting in Arabidopsis by manipulating DNA repair pathways. Genome Research 23: 547–554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramirez, C.L., J.E. Foley, D.A. Wright, F. Müller-Lerch, S.H. Rahman, T.I. Cornu, R.J. Winfrey, et al. 2008. Unexpected failure rates for modular assembly of engineered zinc fingers. Nature Methods 5: 374–375.

    Article  CAS  PubMed  Google Scholar 

  • Ran, F.A., P.D. Hsu, C.Y. Lin, J.S. Gootenberg, S. Konermann, A.E. Trevino, D.A. Scott, et al. 2013. Double nicking by RNA-guided CRISPR cas9 for enhanced genome editing specificity. Cell 154: 1380–1389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salomon, S., and H. Puchta. 1998. Capture of genomic and T-DNA sequences during double-strand break repair in somatic plant cells. The EMBO Journal 17: 6086–6095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sander, J.D., E.J. Dahlborg, M.J. Goodwin, L. Cade, F. Zhang, D. Cifuentes, S.J. Curtin, et al. 2011. Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA). Nature Methods 8: 67–69.

    Article  CAS  PubMed  Google Scholar 

  • Scalley-Kim, M., A. McConnell-Smith, and B.L. Stoddard. 2007. Coevolution of a homing endonuclease and its host target sequence. Journal of Molecular Biology 372: 1305–1319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuermann, D., J. Molinier, O. Fritsch, and B. Hohn. 2005. The dual nature of homologous recombination in plants. Trends in Genetics 21: 172–181.

    Article  CAS  PubMed  Google Scholar 

  • Sha, A., J. Zhao, K. Yin, Y. Tang, Y. Wang, X. Wei, Y. Hong, and Y. Liu. 2013. Virus-based microRNA silencing in plants. Plant Physiology 164: 36–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shan, Q., Y. Wang, K. Chen, Z. Liang, J. Li, Y. Zhang, K. Zhang, et al. 2013a. Rapid and efficient gene modification in rice and Brachypodium using TALENs. Molecular Plant 6: 1365–1368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shan, Q., Y. Wang, J. Li, Y. Zhang, K. Chen, Z. Liang, K. Zhang, et al. 2013b. Targeted genome modification of crop plants using a CRISPR-Cas system. Nature Biotechnology 31: 686–688.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, S.K., D. Bolser, J. De Boer, M. Sønderkær, W. Amoros, M.F. Carboni, J.M. D’Ambrosio, et al. 2013. Construction of reference chromosome-scale pseudomolecules for potato: integrating the potato genome with genetic and physical maps. G3 3: 2031–2047.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shukla, V.K., Y. Doyon, and J.C. Miller. 2009. Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459: 437–441.

    Article  CAS  PubMed  Google Scholar 

  • Siebert, R., and H. Puchta. 2002. Efficient repair of genomic double-strand breaks by homologous recombination between directly repeated sequences in the plant genome. The Plant Cell 14: 1121–1131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith, G.R. 1989. Homologous recombination in E. coli: multiple pathways for multiple reasons. Cell 58: 807–809.

    Article  CAS  PubMed  Google Scholar 

  • Stoddard, B.L. 2005. Homing endonuclease structure and function. Quarterly Reviews of Biophysics 38: 49–95.

    Article  CAS  PubMed  Google Scholar 

  • Stoddard, B.L. 2011. Homing endonucleases: from microbial genetic invaders to reagents for targeted DNA modification. Structure 19: 7–15.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sun, N., and H. Zhao. 2013. Transcription activator-like effector nucleases (TALENs): a highly efficient and versatile tool for genome editing. Biotechnology and Bioengineering 110: 1811–1821.

    Article  CAS  PubMed  Google Scholar 

  • Szczepek, M., V. Brondani, J. Büchel, L. Serrano, D.J. Segal, and T. Cathomen. 2007. Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nature Biotechnology 25: 786–793.

    Article  CAS  PubMed  Google Scholar 

  • Tang, T.-H., J.-P. Bachellerie, T. Rozhdestvensky, M.-L. Bortolin, H. Huber, M. Drungowski, T. Elge, J. Brosius, and A. Hüttenhofer. 2002. Identification of 86 candidates for small non-messenger RNAs from the archaeon Archaeoglobus fulgidus. PNAS 99: 7536–7541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas, M. 2013. Fields of gold. Nature 497: 5–6.

    Google Scholar 

  • Toevs, E.A., J.F. Guenthner, A.J. Johnson, C.S. McIntosh, and M.K. Thornton. 2011. An industry perspective of all-native and transgenic potatoes. AgBioforum 14: 14–19.

    Google Scholar 

  • Townsend, J.A., D.A. Wright, R.J. Winfrey, F. Fu, M.L. Maeder, J.K. Joung, and D.F. Voytas. 2009. High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature 459: 442–445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai, H., T. Howell, R. Nitcher, V. Missirian, B. Watson, K.J. Ngo, M. Lieberman, et al. 2011. Discovery of rare mutations in populations: TILLING by sequencing. Plant Physiology 156: 1257–1268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai, S.Q., N. Wyvekens, C. Khayter, J.A. Foden, V. Thapar, D. Reyon, M.J. Goodwin, M.J. Aryee, and J.K. Joung. 2014. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nature Biotechnology 32: 569–576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuteja, N., S. Verma, R.K. Sahoo, S. Raveendar, and B.L. Reddy. 2012. Recent advances in development of marker-free transgenic plants: regulation and biosafety concern. Journal of Biosciences 37: 167–197.

    Article  CAS  PubMed  Google Scholar 

  • Tzfira, T., L.R. Frankman, M. Vaidya, and V. Citovsky. 2003. Site-specific integration of Agrobacterium tumefaciens T-DNA via double-stranded intermediates. Plant Physiology 133: 1011–1023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • USDA. 2012. USDA Organic 101.

  • Van Montagu, M. 2011. It is a long way to GM agriculture. Annual Review of Plant Biology 62: 1–23.

    Article  PubMed  CAS  Google Scholar 

  • Voytas, D.F., and C. Gao. 2014. Precision genome engineering and agriculture: opportunities and regulatory challenges. PLoS Biology 12: e1001877.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vu, G.T.H., H.X. Cao, K. Watanabe, G. Hensel, F.R. Blattner, J. Kumlehn, and I. Schubert. 2014. Repair of site-specific DNA double-strand breaks in barley occurs via diverse pathways primarily involving the sister chromatid. The Plant Cell 26: 2156–2167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waltz, E. 2012. Tiptoeing around transgenics. Nature Biotechnology 30: 215–217.

    Article  CAS  PubMed  Google Scholar 

  • Waltz, E. 2015a. Nonbrowning GM apple cleared for market. Nature Biotechnology 33: 326–327.

    Article  CAS  PubMed  Google Scholar 

  • Waltz, E. 2015b. USDA approves next-generation GM potato. Nature Biotechnology 33: 12–13.

    Article  CAS  PubMed  Google Scholar 

  • Wang, T.L., C. Uauy, F. Robson, and B. Till. 2012. TILLING in extremis. Plant Biotechnology Journal 10: 761–772.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., X. Cheng, Q. Shan, Y. Zhang, J. Liu, C. Gao, and J.-L. Qiu. 2014. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature Biotechnology 32: 947–951.

    Article  CAS  PubMed  Google Scholar 

  • Wang, S., S. Zhang, W. Wang, X. Xiong, F. Meng, and X. Cui. 2015. Efficient targeted mutagenesis in potato by the CRISPR/Cas9 system. Plant Cell Reports. doi:10.1007/s00299-015-1816-7.

    PubMed Central  Google Scholar 

  • Watson, J.D., and F.H.C. Crick. 1953. Molecular structure of nucleic acids. Nature 171: 737–738.

    Article  CAS  PubMed  Google Scholar 

  • Weeks, D.P., M.H. Spalding, and B. Yang. 2015. Use of designer nucleases for targeted gene and genome editing in plants. Plant Biotechnology Journal. doi:10.1111/pbi.12448.

    PubMed  Google Scholar 

  • Weinthal, D.M., R.A. Taylor, and T. Tzfira. 2013. Non-homologous end-joining-mediated gene replacement in plant cells. Plant Physiology 162: 390–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wendt, T., P.B. Holm, C.G. Starker, M. Christian, D.F. Voytas, H. Brinch-Pedersen, and I.B. Holme. 2013. TAL effector nucleases induce mutations at a pre-selected location in the genome of primary barley transformants. Plant Molecular Biology 83: 279–285.

    Article  CAS  PubMed  Google Scholar 

  • Wiedenheft, B., S.H. Sternberg, and J.A. Doudna. 2012. RNA-guided genetic silencing systems in bacteria and archaea. Nature 482: 331–338.

    Article  CAS  PubMed  Google Scholar 

  • Wohlers, A.E. 2013. Labeling of genetically modified food. Politics and the Life Sciences 32: 58–72.

    Article  Google Scholar 

  • Wolt, J.D., K. Wang, and B. Yang. 2015. The regulatory status of genome-edited crops. Plant Biotechnology Journal. doi:10.1111/pbi.12444.

    PubMed  Google Scholar 

  • Wright, D.A., J.A. Townsend, R.J. Winfrey, P.A. Irwin, J. Rajagopal, P.M. Lonosky, B.D. Hall, M.D. Jondle, and D.F. Voytas. 2005. High-frequency homologous recombination in plants mediated by zinc-finger nucleases. The Plant Journal 44: 693–705.

    Article  CAS  PubMed  Google Scholar 

  • Wu, T.C., and M. Lichten. 1995. Factors that affect the location and frequency of meiosis-induced double- strand breaks in Saccharomyces cerevisiae. Genetics 140: 55–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, L., P.B. Bhaskar, J.S. Busse, R. Zhang, P.C. Bethke, and J. Jiang. 2011. Developing cold-chipping potato varieties by silencing the vacuolar invertase gene. Crop Science 51: 981–990.

    Article  Google Scholar 

  • Yang, J., Y. Zhang, P. Yuan, Y. Zhou, C. Cai, Q. Ren, D. Wen, C. Chu, H. Qi, and W. Wei. 2014. Complete decoding of TAL effectors for DNA recognition. Cell Research 24: 628–631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, F., M.L. Maeder, E. Unger-Wallace, J.P. Hoshaw, D. Reyon, M. Christian, X. Li, et al. 2010. High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. PNAS 107: 12028–12033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y., F. Zhang, X. Li, J.A. Baller, Y. Qi, C.G. Starker, A.J. Bogdanove, and D.F. Voytas. 2013. Transcription activator-like effector nucleases enable efficient plant genome engineering. Plant Physiology 161: 20–27.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, F., Y. Wen, and X. Guo. 2014. CRISPR/Cas9 for genome editing: progress, implications and challenges. Human Molecular Genetics 23: 40–46.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, X., C. Richael, P. Chamberlain, J.S. Busse, A.J. Bussan, J. Jiang, and P.C. Bethke. 2014. Vacuolar invertase gene silencing in potato (Solanum tuberosum L.) improves processing quality by decreasing the frequency of sugar-end defects. PloS One 9: e93381.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dan Voytas and Adam Bogdanove for helpful discussions and support from the Biotechnology Risk Assessment Grant Program competitive grant no. 2013-33522-21090 from the USDA National Institute of Food and Agriculture and the Agricultural Research Service.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S. Douches.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Butler, N.M., Douches, D.S. Sequence-Specific Nucleases for Genetic Improvement of Potato. Am. J. Potato Res. 93, 303–320 (2016). https://doi.org/10.1007/s12230-016-9513-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12230-016-9513-9

Keywords

Navigation