Skip to main content
Log in

Relationship Between Tuber Storage Proteins and Tuber Powdery Scab Resistance in Potato

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

The potato genotypes (Solanum tuberosum L.) with russet tuber skin are generally resistant to powdery scab (Spongospora subterranea f.sp. subterranea or Sss). Lipoxygenase (LOX; EC 1.13.11.12) and patatin are two key storage proteins that are known to offer resistance to several diseases and insects. The objective of this study was to find out the relationship of these proteins in stored tubers with potato tuber powdery scab resistance, especially in russet skinned potatoes. An evaluation of potato germplasm with different tuber characteristics in a greenhouse environment over several years (2006–’11) suggests that russet skinned tuber genotypes (Mesa Russet, Centennial Russet and Russet Nugget) with negligible tuber disease severity index (DSI) and 100 % marketability were resistant to powdery scab. Higher physiological levels of LOX protein (on a dry weight basis) were negatively correlated with tuber DSI and positively correlated with tuber russet skin. Tuber total protein and patatin-lipase levels did not have a significant relationship with tuber powdery scab resistance. The proposed role of LOX protein in suberin- and/or non-suberin-mediated mechanisms of powdery scab resistance in russet skinned tubers are discussed here. The physiological levels of LOX protein can be considered as a useful marker for powdery scab resistance in potato breeding programs.

Resumen

Los genotipos de papa (Solanum tuberosum L.) con piel rugosa, generalmente son tolerantes a la enfermedad de la roña polvorienta (Spongospora subterránea f. sp. Subterránea o Sss). Lipoxigenasa (LOX; EC 1.13.11.12) y patatina son dos proteínas clave de almacenamiento que se sabe que confieren resistencia a varias enfermedades e insectos. El objetivo de este estudio fue investigar la relación de estas proteínas en tubérculos almacenados con tolerancia a la roña polvorienta, especialmente en papas de piel rugosa. Una evaluación de germoplasma de papa con diferentes características de tubérculo en un ambiente de invernadero durante varios años (2006–2011) sugiere que los genotipos con tubérculos de piel rugosa (Mesa Russet, Centennial Russet y Russet Nugget) con un índice imperceptible de severidad de la enfermedad en el tubérculo (DSI) y 100 % comercializables, fueron tolerantes a la roña polvorienta. Niveles fisiológicos más altos de la proteína LOX (en base a peso seco) estuvieron negativamente correlacionados con el DSI del tubérculo y positivamente con la piel rugosa. La proteína total del tubérculo y los niveles de patatina-lipasa no tuvieron una relación significativa con la tolerancia a la roña polvorienta. Aquí se discute el papel propuesto de la proteína LOX en mecanismos mediados y no mediados de suberina en la tolerancia a la roña polvorienta en tubérculos de piel rugosa. Los niveles fisiológicos de la proteína LOX pudieran considerarse como un marcador útil para la resistencia a la roña polvorienta en los programas de mejoramiento de papa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Almagro, L., L.V.G. Ros, S. Belchi-Navarro, R. Bru, A.R. Barcelo, and M.A. Pedreno. 2009. Class III peroxidases in plant defence reactions. Journal of Experimental Botany 60: 377–390.

    Article  CAS  PubMed  Google Scholar 

  • Andreou, A., and I. Feussner. 2009. Lipoxygenases-structure and reaction mechanism. Phytochemistry 70: 1504–1510.

    Article  CAS  PubMed  Google Scholar 

  • Barel, G., and I. Ginzberg. 2008. Potato skin proteome is enriched with plant defence components. Journal of Experimental Botany 59: 3347–3357.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bauw, G., H.V. Nielsen, J. Emmersen, K.L. Nielsen, M. Jorgensen, and K.G. Welinder. 2006. Patatins, Kunitz protease inhibitors and other major proteins in tuber of potato cv. Kuras. FEBS Journal 273: 3569–3584.

    Article  CAS  PubMed  Google Scholar 

  • Berkeley, H.D., and T. Galliard. 1974. Lipids of potato tubers. 4. Effect of growth and storage on the lipid-degrading enzymes of the potato tuber. Journal of the Science of Food and Agriculture 25: 869–873.

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya, S.K., S. Ray, and R. Dwivedi. 1985. Sources of resistance to powdery scab in potatoes. Indian Phytopathology 38: 174–175.

    Google Scholar 

  • Blee, E., and F. Schuber. 1993. Biosynthesis of cutin monomers: involvement of a lipoxygenase/peroxigenase pathway. Plant Journal 4: 113–123.

    Article  CAS  Google Scholar 

  • Blee, E., A.L. Wilcox, L.J. Marnett, and F. Schuber. 1993. Mechanism of reaction of fatty acid hydroperoxides with soybean peroxygenase. Journal of Biological Chemistry 268: 1708–1715.

    CAS  PubMed  Google Scholar 

  • Bonde, R. 1955. The effect of powdery scab on the resistance of potato tuber to late blight rot. Maine Agricultural Experiment Station Bulletin No. 538: 1–11.

    Google Scholar 

  • Bostock, R.M., H. Yamamoto, D. Choi, K.E. Ricker, and B.L. Ward. 1992. Rapid stimulation of 5-lipoxygenase activity in potato by the fungal elicitor arcahidonic acid. Plant Physiology 100: 1448–1456.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brown, C.R., G. Vandemark, D. Johnson, T. Cummings, D. Batchelor, J. Miller, and C. Olsen. 2007. Resistance to powdery scab in potato. Potato Progress 7(6), 1. Published by the Washington State Potato Commission, www.potatoes.com.

  • Cenzano, A., G. Abdala, and B. Hause. 2007. Cytochemical immune-localization of allene oxide cyclase, a jasmonic acid biosynthetic enzyme, in developing potato stolons. Journal of Plant Physiology 164: 1449–1456.

    Article  CAS  PubMed  Google Scholar 

  • Chaves, I., C. Pinheiro, J.A. Paiva, S. Planchon, K. Sergeant, J. Renaut, J.A. Graca, G. Costa, A.V. Coellho, and C.P.P. Ricardo. 2009. Proteomic evaluation of wound-healing processes in potato (Solanum tuberosum L.) tuber tissue. Proteomics 9: 4154–4175.

    Article  CAS  PubMed  Google Scholar 

  • Cho, K.-J., J.-M. Seo, and J.-H. Kim. 2011. Bioactive lipoxygenase metabolites stimulation of NADPH oxidases and reactive oxygen species. Molecules and Cells 32: 1–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dhondt, S., P. Geoffroy, B.A. Stelmach, M. Legrand, and T. Heitz. 2000. Soluble phospholipase A2 activity is induced before oxylipin accumulation in tobacco mosaic virus-infected tobacco leaves and is contributed by patatin-like enzymes. Plant Journal 23: 431–440.

    Article  CAS  PubMed  Google Scholar 

  • Fallon, R.E., R.A. Genet, A.R. Wallace, and R.C. Butler. 2003. Susceptibility of potato (Solanum tuberosum) cultivars to powdery scab (caused by Spongospora subterranea f. sp. subterranea), and relationships between tuber and root infection. Australasian Plant Pathology 32: 377–385.

    Article  Google Scholar 

  • Fauconnier, M.-L., J. Rojas-Beltran, B. Dupuis, P. Delaplace, P. Frettinger, V. Gosset, and P. du Jardin. 2008. Changes in oxylipin synthesis after Phytophthora infestans infection of potato leaves do not correlate with resistance. Plant Physiology and Biochemistry 46: 823–831.

    Article  CAS  PubMed  Google Scholar 

  • Fernandez, M.B., M.R. Pagano, G.R. Daleo, and M.G. Guevara. 2012. Hydrophobic proteins secreted into the apoplast may contribute to resistance against Phytophthora infestans in potato. Plant Physiology and Biochemistry 60: 59–66.

    Article  CAS  PubMed  Google Scholar 

  • Feussner, I., and C. Wasternack. 2002. The lipoxygenase pathway. Annual Review of Plant Biology 53: 275–297.

    Article  CAS  PubMed  Google Scholar 

  • Fornier, N. 1997. Epidemiology of Spongospora subterranea, the cause of powdery scab of potatoes. Ph.D. thesis, University of Aberdeen, Aberdeen, UK.

  • Gabriel, O. 1971. Locating enzymes on gels. Methods in Enzymology 22: 578–604.

    Article  Google Scholar 

  • Gobel, C., I. Feussner, A. Schmidt, D. Scheel, J. Sanchez-Serrano, M. Hamberg, and S. Rosahl. 2001. Oxylipin profiling reveals the preferential stimulation of the 9-lipoxygenase pathway in elicitor-treated potato cells. Journal of Biological Chemistry 276: 6267–6273.

    Article  CAS  PubMed  Google Scholar 

  • Gunawardena, A.H.L.A.N., J.S. Greenwood, and N.G. Dengler. 2007. Cell wall degradation and modification during programmed cell death in lace plant, Aponogeton madagascariensis (Aponogetonaceae). American Journal of Botany 94: 1116–1128.

    Article  CAS  PubMed  Google Scholar 

  • Harrison, J.G., R.J. Searle, and N.A. Williams. 1997. Powdery scab disease of potato – a review. Plant Pathology 46: 1–25.

    Article  Google Scholar 

  • Hirschberg, H.J.H.B., J.W.F.A. Simons, N. Dekker, and M.R. Egmond. 2001. Cloning, expression, purification and characterization of patatin, a novel phospholipase A. European Journal of Biochemistry 268: 5037–5044.

    Article  CAS  PubMed  Google Scholar 

  • Houser, A.J., and R.D. Davidson. 2010. Development of a greenhouse assay to evaluate potato germplasm for susceptibility to powdery scab. American Journal of Potato Research 87: 285–298.

    Article  Google Scholar 

  • Jorgensen, M., G. Bauw, and K.G. Welinder. 2006. Molecular properties and activities of tuber proteins from starch potato cv. Kuras. Journal of Agricultural and Food Chemistry 54: 9389–9397.

    Article  CAS  PubMed  Google Scholar 

  • Kolomiets, M.V., D.J. Hannapel, H. Chen, M. Tymeson, and R.J. Gladon. 2001. Lipoxygenase is involved in the control of potato tuber development. The Plant Cell 13: 613–626.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lees, A.K., P.V.D. Graaf, and S. Wale. 2008. The identification and detection of Spongospora subterranea and factors affecting infection and disease. American Journal of Potato Research 85: 247–252.

    Article  Google Scholar 

  • Lehesranta, S.J., H.V. Davies, L.V.T. Shepherd, N. Nunan, J.W. McNicol, S. Auriola, K.M. Koistinen, S. Suomalainen, K.I. Kokko, and S.O. Karenlampi. 2005. Comparison of tuber proteomes of potato varieties, landraces and genetically modified lines. Plant Physiology 138: 1690–1699.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lequeu, J., M.-L. Fauconnier, A. Chammai, R. Bronner, and E. Blee. 2003. Formation of plant cuticle: evidence for the occurrence of the peroxigenase pathway. The Plant Journal 36: 155–164.

    Article  CAS  PubMed  Google Scholar 

  • Liavonchanka, A., and I. Feussner. 2006. Lipoxygenases: occurrence, functions and catalysis. Journal of Plant Physiology 163: 348–357.

    Article  CAS  PubMed  Google Scholar 

  • Lulai, E.C. 2007. Skin-set, wound healing, and related defects. In Potato Biology and Biotechnology – Advances and Perspectives, ed Vreugdenhil D. Page, 471–500. Amsterdam: Elsevier Press.

    Google Scholar 

  • Manosalva, P., S. Torres, F. Trognitz, R. Gysin, D. Nino-Liu, R. Simon, M. Herrera, W. Perez, J. Landeo, B. Trognitz, M. Ghislain, and R. Nelson. 2001. Plant defense genes associated with quantitative resistance to potato late blight. Scientist and Farmer: partners in research for the 21 st century. Program Report 1999–2000, International Potato Center, Lima, 27–37.

  • Marjamaa, K., E.M. Kukkola, and K.V. Fagerstedt. 2009. The role of xylem class III peroxidases in lignification. Journal of Experimental Botany 60: 367–376.

    Article  CAS  PubMed  Google Scholar 

  • Matos, A.R., A. d’Arcy-Lameta, M. Franca, Y. Zuily-Fodil, and A.T. Pham-Thi. 2000. A patatin-like protein with galactolipase activity is induced by drought stress in Vigna unguiculata leaves. Biochemical Society Transactions 28: 779–781.

    Article  CAS  PubMed  Google Scholar 

  • Matos, A.R., A. d’Arcy-Lameta, M. Franca, S. Petres, L. Edelman, J.-C. Kader, Y. Zuily-Fodil, and A.T. Pham-Thi. 2001. A novel patatin-like gene stimulated by drought stress encodes a galactolipid acyl hydrolase. FEBS Letters 491: 188–192.

    Article  CAS  PubMed  Google Scholar 

  • Merz, U., V. Martinez, and R. Schwarzel. 2004. The potential for the rapid screening of potato cultivars (Solanum tuberosum) for resistance to powdery scab (Spongospora subterranea) using a laboratory bioassay. European Journal of Plant Pathology 110: 71–77.

    Article  Google Scholar 

  • Nitzan, N., T.F. Cummings, D.A. Johnson, J.S. Miller, D.I. Batchelor, C. Olsen, R.A. Quick, and C.R. Brown. 2008. Resistance to root galling caused by the powdery scab pathogen Spongospora subterranea in potato. Plant Disease 92: 1643–49.

    Article  Google Scholar 

  • Nitzan, N., K.G. Haynes, J.S. Miller, D.A. Johnson, T.F. Cummings, D.L. Batchelor, C. Olsen, and C.R. Brown. 2010. Genetic stability in potato germplasm for resistance to root galling caused by the pathogen Spongospora subterranea. American Journal of Potato Research 87: 497–501.

    Article  Google Scholar 

  • Perla, V., D.G. Holm, and S.S. Jayanty. 2011. Effects of cooking methods on polyphenols, pigments and antioxidant activity in potato tubers. LWT- Food Science and Technology 45: 161–171.

    Article  Google Scholar 

  • Perla, V., D.G. Holm, and S.S. Jayanty. 2012. Selenium and sulfur content and activity of associated enzymes in selected potato germplasm. American Journal of Potato Research 89: 111–120.

    Article  CAS  Google Scholar 

  • Polkowska-Kowalczyk, L., B. Wielgat, and U. Maciejewska. 2004. The elicitor-induced oxidative processes in leaves of Solanum species with differential polygenic resistance to Phytophthora infestans. Journal of Plant Physiology 161: 913–920.

    Article  CAS  PubMed  Google Scholar 

  • Porta, H., and M. Rocha-Sosa. 2002. Plant lipoxygenases. Physiological and molecular features. Plant Physiology 130: 15–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pots, A.M., H. Gruppen, R. van Diepenbeek, J.J. van der Lee, M.A.J.S. van Boekel, G. Wijngaards, and A.G.J. Voragen. 1999. The effect of storage of whole potatoes of three cultivars on the patatin and protease inhibitor content; a study using capillary electrophoresis and MALDI-TOF mass spectrometry. Journal of the Science of Food and Agriculture 79: 1557–1564.

    Article  CAS  Google Scholar 

  • Prost, I., S. Dhondt, G. Rothe, J. Vicente, M.J. Rodriguez, N. Kift, F. Carbonne, G. Griffiths, M.-T. Esquerre-Tugaye, S. Rosahl, C. Castresana, M. Hamberg, and J. Fournier. 2005. Evaluation of the antimicrobial activities of plant oxylipins supports their involvement in defense against pathogens. Plant Physiology 139: 1902–1913.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Razem, F.A., and M.A. Bernards. 2003. Reactive oxygen species production in association with suberization: evidence for an NADPH-dependent oxidase. Journal of Experimental Botany 54: 935–941.

    Article  CAS  PubMed  Google Scholar 

  • Rudolph, M., A. Schlereth, M. Korner, K. Feussner, E. Berndt, M. Melzer, E. Hornung, and I. Feussner. 2011. The lipoxygenase-dependent oxygenation of lipid body membranes is promoted by a patatin-type phospholipase in cucumber cotyledons. Journal of Experimental Botany 62: 749–760.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rusterucci, C., J.L. Montillet, J.P. Agnel, C. Battesti, B. Alonso, A. Knoll, J.J. Bessoule, P. Etienne, L. Suty, J.P. Blein, et al. 1999. Involvement of lipoxygenase-dependent production of fatty acid hydroperoxides in the development of the hypersensitive cell death induced by cryptogein of tobacco leaves. Journal of Biological Chemistry 274: 36446–36455.

    Article  CAS  PubMed  Google Scholar 

  • Rydel, T.J., J.M. Williams, E. Krieger, F. Moshiri, W.C. Stallings, S.M. Brown, J.C. Pershing, J.P. Prucell, and M.F. Alibhai. 2003. The crystal structure, mutagenesis, and activity studies reveal that patatin is a lipid acyl hydrolase with a Ser-Asp catalytic dyad. Biochemistry 42: 6696–6708.

    Article  CAS  PubMed  Google Scholar 

  • Senda, K., H. Yoshioka, N. Doke, and K. Kawakita. 1996. A cytosolic phospholipase A2 from potato tissues appears to be patatin. Plant and Cell Physiology 37: 347–353.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, N., H.A. Gruszewski, S.W. Park, D.G. Holm, and J.M. Vivanco. 2004. Purification of an isoform of patatin with antimicrobial activity against Phytophthora infestans. Plant Physiology and Biochemistry 42: 647–655.

    Article  CAS  PubMed  Google Scholar 

  • Shewry, P.R. 2003. Tuber storage proteins. Annals of Botany 91: 755–769.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shewry, P.R., and J.A. Lucas. 1997. Plant proteins that confer resistance to pests and pathogens. In Advances in Botanical Research, ed Callow J. Vol 26, Page, 135–192. London: Academic.

    Chapter  Google Scholar 

  • Shibata, D., A. Slusarenko, R. Casey, D. Hildebrand, and E. Bell. 1994. Lipoxygenases. Plant Molecular Biology Reporter 12: S41–42.

    Article  CAS  Google Scholar 

  • Siedow, J.N. 1991. Plant lipoxygenase: structure and function. Annual Review of Plant Physiology and Plant Molecular Biology 42: 145–188.

    Article  CAS  Google Scholar 

  • Soler, M., O. Serra, M. Molinas, G. Huguet, S. Fluch, and M. Figueras. 2007. A genomic approach to suberin biosynthesis and cork differentiation. Plant Physiology 144: 419–431.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Soler, M., O. Serra, S. Fluch, M. Molinas, and M. Figueras. 2011. A potato skin SSH library yields new candidate genes for suberin biosynthesis and periderm formation. Planta 233: 933–945.

    Article  CAS  PubMed  Google Scholar 

  • Spiteller, G. 2007. The important role of lipid peroxidation processes in aging and age dependent diseases. Molecular Biotechnology 37: 5–12.

    Article  CAS  PubMed  Google Scholar 

  • Strickland, J.A., G.L. Orr, and T.A. Walsh. 1995. Inhibition of Diabrotica larval growth by patatin, the lipid acyl hydrolase from potato tubers. Plant Physiology 109: 667–674.

    PubMed Central  CAS  PubMed  Google Scholar 

  • van Loon, L.C., and E.A. van Strien. 1999. The families of pathogenesis-related proteins, their activities and comparative analysis of PR-1 type proteins. Physiological and Molecular Plant Pathology 55: 85–97.

    Article  Google Scholar 

  • Vaughn, S.F., and E.C. Lulai. 1992. Further evidence that lipoxygenase activity is required for arachidonic acid-elicited hypersensitivity in potato callus cultures. Plant Science 84: 91–98.

    Article  CAS  Google Scholar 

  • Wastie, R.L. 1991. Resistance to powdery scab of seedling progenies of Solanum tuberosum. Potato Research 34: 249–252.

    Article  Google Scholar 

  • Wastie, R.L., and H.E. Stewart. 1990. Resistance screening and enhancement of resistant germplasm. Fungal and bacterial diseases. Scottish Crop Research Institute Annual Report for 1989: 29.

    Google Scholar 

  • Weber, H., A. Chetelat, D. Caldelari, and E.E. Farmer. 1999. Divinyl ether fatty acid synthesis in late blight-diseased potato leaves. The Plant Cell 11: 485–493.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wild, N. 1929. Untersuchungen uber den pulverschorf der kartoffelknollen (Spongospora subterranea (Wallr.) Johnson). Phytopathologische Zeitschrift 1: 367–452.

    Google Scholar 

Download references

Acknowledgements

We are thankful to Andrew Houser, Mary LaRue Snell, and Teresa V. Rivera for their help during the study.

Disclaimers

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sastry S. Jayanty.

Electronic Supplementary Materials

Below is the link to the electronic supplementary material.

Table S1

Evaluation of selective potato germplasm for powdery scab root gall rating in a greenhouse environment during 2006–2011. (DOCX 16 kb)

Table S2

Kendall’s tau correlation between powdery scab root gall rating, tuber DSI, unmarketable tubers, total protein, LOX and patatin-lipase levels of tubers. (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perla, V., Jayanty, S.S., Holm, D.G. et al. Relationship Between Tuber Storage Proteins and Tuber Powdery Scab Resistance in Potato. Am. J. Potato Res. 91, 233–245 (2014). https://doi.org/10.1007/s12230-013-9343-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12230-013-9343-y

Keywords

Navigation