Skip to main content
Log in

Evaluation of Neomycin Phosphotransferase II and Cry3A as Targets for the Serological Detection of Transgenic Potato Tubers

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

Neomycin phosphotransferase II (NptII) and Cry3A were evaluated as potential targets in ELISA for the detection of transgenic potato tubers. The highest concentrations of NptII (0.23 – 2.95 μg /g) were measured in cultivar NL 10-ATL tubers, while very low (<0.007 μg /g) or undetectable levels of NptII were found in tuber tissue of the other cultivars. Polymerase chain reaction (PCR) analysis revealed that the nptII transgene could not be detected in cultivars NL 10-SUP or in NL-30-RBK-082. It was concluded that a serological method targeting NptII would not provide an effective approach for detecting transgenic potato tubers. Cry3A could be detected in all the cultivars, ranging between 0.02 μg /g in NL 20-SHE and NL 10-ATL to 1.98 μg /g in NL 10-SUP. Environmental conditions appeared to influence Cry3A protein accumulation in tubers of cultivar NL 30-RBK-350 but no such effect on cultivars NL 10-ATL or NL 20-SHE could be detected. It was concluded that ELISA methods for Cry3A detection could be used for confirming the presence of cry3A in individual tubers. With improved sensitivity for Cry3A, serological methods may be useful in screening larger lots for the presence of transgenic potato tubers.

Resumen

Se evaluaron neomicina fosfotransferasa II (NptII) y Cry 3A como objetivos potenciales en ELISA para la detección de tubérculos de papa transgénica. Las concentraciones más altas de NptII (0.23–2.95 µg/g) se midieron en tubérculos del cultivar NL-10-ATL, mientras que se encontró niveles muy bajos (<0.007 µg/g) o indetectables de NptII en la pulpa del tejido de tubérculo de otros cultivares. El análisis de la reacción en cadena de la polimerasa (PCR), reveló que el transgen nptII no pudo ser detectado en los cultivares NL10-SUP o en NL-30-RBK-082. Se concluyó que el método serológico dirigido a NptII no proporciona un enfoque efectivo para detectar tubérculos de papa transgénica. El Cry3A puede ser detectado en todos los cultivares en el rango entre 0.02 µg/g en NL 20-SHE y NL 10-ATL a 1.98 µg/g en NL 10-SUP. Las condiciones ambientales parecen influenciar la acumulación de la proteína Cry3A en tubérculos del cultivar NL 30 RBK 350 pero no se pudo detectar tal efecto sobre los cultivares NL10-ATL o NL 20-SHE. Se concluyó que el método ELISA para la detección de Cry3A podría usarse para confirmar la presencia de cry3A en tubérculos individuales. Con sensibilidad mejorada para Cry3A, los métodos serológicos pueden ser útiles en el tamizado de lotes grandes para presencia de tubérculos de papa transgénica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • ANZFA (Australia New Zealand Food Authority). 2001a. Food derived from insect and potato virus Y-protected (NewLeaf® Plus) Potato Lines BT-06, ATBT04–06, ATBT04–31, ATBT04–36, and SPBT02–05. A Safety assessment. Technical Report Series 11. http://www.foodstandards.gov.au/_srcfiles/TR11.pdf

  • ANZFA (Australia New Zealand Food Authority). 2001b. Food derived from insect and potato leafroll virus protected (NewLeaf® Plus) Potato Lines RBMT21–129, RBMT21–350, and RBMT22–82. A Safety assessment. Technical Report Series 12. http://www.foodstandards.gov.au/_srcfiles/TR12.pdf

  • ANZFA (Australia New Zealand Food Authority). 2001c. Food derived from insect and potato virus Y-protected (NewLeaf® Y) Potato Lines RBMT15–101, SEMT15–02 and SEMT15–15. A Safety Assessment. Technical Report Series 13. http://www.foodstandards.gov.au/_srcfiles/TR13.pdf

  • APHIS/USDA (Animal and Plant Health Inspection Service/United States Department of Agriculture). 1996. Response to Monsanto Company Petition 95-338-01p for determination of nonregulated status for Colorado potato beetle resistant potato lines SPBT02–5, SPBT02–7, ATBT04–6, ATBT04–27, ATBT04–30, ATBT04–31, ATBT04–36. http://www.aphis.usda.gov/brs/dec_docs/9533801p_det.htm

  • APHIS/USDA (Animal and Plant Health Inspection Service/United States Department of Agriculture). 1999. Monsanto Petition 97-339-01p for a Determination of Nonregulated Status for Transgenic Potato Lines Resistant to Colorado Potato Beetle and Potato Virus Y. Environmental Assessment and Finding of No Significant Impact. http://www.aphis.usda.gov/brs/dec_docs/9733901p_det_ea.htm

  • Applied Biosystems. 1996. TaqMan™ Plant Transgenic Screening Kit. P/N 904150 Protocol. (Product discontinued).

  • Akiyama, H., K. Sugimoto, M. Mastumoto, K. Isuzugawa, M. Shibuya,Y. Goda, and M. Toyoda. 2002. A detection method of recombinant DNA from genetically modified potato (NewLeaf Plus® potato) and detection of NewLeaf Plus® potato in snack. Journal of Food Hygienic Society of Japan, 43: 24–29.

    Article  CAS  Google Scholar 

  • Blundy, K.S., M.A.C. Blundy, D. Carter, F. Wilson,W.D. Park, and M.M. Burrell. 1991. The expression of class I patatin gene fusions in transgenic potato varies with both gene and cultivar. Plant Molecular Biology 16:153–160.

    Article  PubMed  CAS  Google Scholar 

  • Beck, E., G. Ludwig, E.A. Auerswald, B. Reiss, and H. Schaller. 1982. Nucleotide sequence and exact localization of the neomycin phosphotransferase gene from transposon Tn5. Gene 19:327–336.

    Article  PubMed  CAS  Google Scholar 

  • CFIA (Canadian Food Inspection Agency). 1996. Decision Document DD96-06: Determination of Environmental Safety of NatureMark Potatoes’ Colorado Potato Beetle (CPB) Resistant Potato (Solanum tuberosum L.). http://www.inspection.gc.ca/english/plaveg/bio/dd/dd9606e.shtml

  • De Boer, S.H., L.J. Ward, X. Li, and S. Chittaranjan. 1995. Attenuation of PCR inhibition in the presence of plant compounds by addition of BLOTTO. Nucleic Acids Research 23:2567–2568.

    Article  PubMed  Google Scholar 

  • Down, R.E., L. Ford, S.J. Bedford, L.N. Gatehouse, C. Newell, J.A. Gatehouse, and A.M.R. Gatehouse. 2001. Influence of plant development and environment on transgene expression in potato and consequences for insect resistance. Transgenic Research 10:223–226.

    Article  PubMed  CAS  Google Scholar 

  • Gittins, J.R., T.K. Pellny, E.R. Hiles, C. Rosa, S. Biricolti, and D.J. James. 2000. Transgene expression driven by heterologous ribulose-1, 5-bisphosphate carboxylase/oxygenase small-subunit gene promoters in the vegetative tissues of apple (Malus pumila Mill.). Planta 210:232–240.

    Article  PubMed  CAS  Google Scholar 

  • Harpster, M.H., J.A. Townsend, J.D. Jones, J. Bedbrook, and P. Dunsmuir. 1988. Relative strengths of the 35S cauliflower mosaic virus 1, 2, and nopaline synthase promoters in transformed tobacco, sugarbeet and oilseed rape callus tissue. Molecular and General Genetics 212:182–190.

    Article  PubMed  CAS  Google Scholar 

  • Lipton, C.R., J.X. Dautlick, G.D. Grothaus, P.L. Hunst, K.M. Magin, C.A. Mihaliak, F.M. Rubio, and J.W. Stave. 2000. Guidelines for the validation and use of immunoassays for determination of introduced proteins in biotechnology enhanced crops and derived food ingredients. Food and Agricultural Immunology 12:153–164.

    Article  CAS  Google Scholar 

  • Pfaffl, M. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research 29:E45–5.

    Article  PubMed  CAS  Google Scholar 

  • Rho, J.K., T. Lee, S.I. Jung, T.S. Kim, Y.H. Park, and Y.M. Kim. 2004. Qualitative and quantitative PCR methods for detection of three lines of genetically modified potatoes. Journal of Agricultural and Food Chemistry 52:3269–3274.

    Article  PubMed  CAS  Google Scholar 

  • Sanders, P.R., J.A. Winter, A.R. Barnason, S.G. Rogers, and R.T. Fraley. 1987. Comparison of cauliflower mosaic virus 35S and nopaline synthase promoters in transgenic plants. Nucleic Acids Research 15:1543–1558.

    Article  PubMed  CAS  Google Scholar 

  • Spoth, B., and E. Strauss. 1998. Screening for genetically modified organisms in food using Promega’s Wizard Resin. Promega Notes 73:23–25.

    Google Scholar 

  • Smith, D.S., P.W. Maxwell, and S.H. De Boer. 2004. Method for the detection of synthetic cry3A in transgenic potatoes. Journal of Agricultural and Food Chemistry 52:809–815.

    Article  PubMed  CAS  Google Scholar 

  • Stave, J.W. 2002. Protein immunoassay methods for detection of biotech crops: applications, limitations, and practical considerations. Journal of AOAC International 85:780–786.

    PubMed  CAS  Google Scholar 

  • Timko, M.P., L. Herdies, E. deAlmeida, A.R. Cashmore, J. Leemans, and E. Krebbers. 1988. Genetic engineering of nuclear-encoded components of the photosynthetic apparatus in Arabidopsis. In: The Impact of Chemistry on Biotechnology: Multidisciplinary Discussion, eds. Phillips, M., S. Shoemaker, R. Middlekauff, and R. Ottenbrite, 279–295. Washington, DC: American Chemical Society.

    Google Scholar 

Download references

Acknowledgements

The authors thank Bob Jenkins of the Canadian Food Inspection Agency for maintaining the transgenic potato tissue culture lines. The authors are also grateful to Christine Noronha and Mary Smith of Agriculture and Agri-Food Canada for providing the transgenic field tubers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donna S. Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, D.S., Maxwell, P.W. & De Boer, S.H. Evaluation of Neomycin Phosphotransferase II and Cry3A as Targets for the Serological Detection of Transgenic Potato Tubers. Am. J. Pot Res 85, 60–68 (2008). https://doi.org/10.1007/s12230-008-9007-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12230-008-9007-5

Keywords

Navigation