Skip to main content
Log in

The Multifunctional Role of Ectomycorrhizal Associations in Forest Ecosystem Processes

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

Belowground biological interactions that occur among plant roots, microorganisms and animals are dynamic and substantially influence ecosystem processes. Among these interactions, the ectomycorrhizal (ECM) symbiosis is remarkable but unfortunately these associations have mainly been considered within the rather narrow perspective of their effects on the uptake of dissolved mineral nutrients by individual plants. More recent research has placed emphasis on a wider, multifunctional perspective, including the effects of ectomycorrhizal symbiosis on plant and microbial communities, and on ecosystem processes. This includes mobilization of N and P from organic polymers, release of nutrients from mineral particles or rock surfaces via weathering, effects on carbon cycling, interactions with mycoheterotrophic plants, mediation of plant responses to stress factors such as drought, soil acidification, toxic metals, and plant pathogens, rehabilitation and regeneration of degraded forest ecosystems, as well as a range of possible interactions with groups of other soil microorganisms. Ectomycorrhizas are almost invariably characterized by a Hartig net composed of highly branched hyphae which entirely surround the outer root cortical cells. The Hartig net is the place of massive bidirectional exchanges of nutrients between the host and the fungus. Through these branched hyphae ectomycorrhizal fungi connect their plant hosts to the heterogeneously distributed nutrients required for their growth, enabling the flow of energy-rich compounds required for nutrient mobilization whilst simultaneously providing conduits for the translocation of mobilized products back to their hosts. In addition to increasing the nutrient absorptive surface area of their host plant root systems, the extraradical mycelium of ectomycorrhizal fungi provides a direct pathway for translocation of photosynthetically derived carbon from their hosts to microsites in the soil and a large surface area for interaction with other soil micro-organisms. The detailed functioning and regulation of these mycorrhizosphere processes is still poorly understood and needs detailed molecular approach to study these mycorrhizosphere processes but recent progress in ectomycorrhizal associations is reviewed and potential benefits of improved understanding of mycorrhizosphere interactions are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Literature Cited

  • Abuzinadah, R. A. & D. J. Read. 1986. The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. Utilization of peptides and proteins by ectomycorrhizal fungi. New Phytologist 103: 481–493.

    Article  CAS  Google Scholar 

  • Ahonen-Jonnarth, U., P. A. W. van Hees, U. S. Lundstrom & R. Finlay. 2000. Production of organic acids by mycorrhizal and non-mycorrhizal Pinus sylvestris seedlings exposed to elevated concentrations of aluminium and heavy metals. New Phytologist 146: 557–567.

    Article  CAS  Google Scholar 

  • Alguacil, M. M., F. Caravaca & A. Roldan. 2005. Changes in rhizosphere microbial activity mediated by native or allochtonous AM fungi in the reforestation of a Mediterranean degraded environment. Biol. Fertil. Soils 41: 59–68.

    Article  Google Scholar 

  • Allen, M. F. 1991. The ecology of mycorrhizae. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Arocena, J. M., A. Gottlein & S. Raidl. 2004. Spatial changes of soil solution and mineral composition in the rhizosphere of Norway-spruce seedlings colonized by Piloderma croceum. Journal of Plant Nutrition and Soil Science 4: 479–486.

    Article  CAS  Google Scholar 

  • Arvieu, J. C., F. Leprince & C. Plassard. 2003. Release of oxalate and protons by ectomycorrhizal fungi in response to P- deficiency and calcium carbonate in nutrient solution. Annals of Forest Science 60: 815–821.

    Article  CAS  Google Scholar 

  • Barbieri, E., C. Guidi, J. Bertaux, P. Frey-Klett, J. Garbaye, P. Ceccaroli, R. Saltarelli, A. Zambonelli & V. Stocchi. 2007. Occurrence and diversity of bacterial communities in Tuber magnatum during truffle maturation. Environmental Microbiology 9: 2234–2246.

    Article  PubMed  Google Scholar 

  • Bellion, M., M. Courbot, C. Jacob, D. Blaudez & M. Chalot. 2006. Extracellular and cellular mechanisms sustaining metal tolerance in ectomycorrhizal fungi. FEMS Microbiology Letters 254: 173–181.

    Article  PubMed  CAS  Google Scholar 

  • Bending, G. D. & D. J. Read. 1995. The structure and function of the vegetative mycelium of ectomycorrhizal plants V. Foraging behaviour and translocation of nutrients from exploited litter. New Phytologist 130: 401–409.

    Article  CAS  Google Scholar 

  • Bertaux, J., M. Schmid, N. C. Prevost-Boure, J. L. Churin, A. Hartmann, J. Garbaye & P. Frey-Klett. 2003. In situ identification of intracellular bacteria related to Paenibacillus spp. in the mycelium of the ectomycorrhizal fungus Laccaria bicolor S238N. Applied and Environmental Microbiology 69: 4243–4248.

    Article  PubMed  CAS  Google Scholar 

  • Bianco-Coletto, M. A. & L. Giardino. 1996. Antibiotic activity in Basidiomycetes. X. antibiotic activity of mycelia and cultural filtrates of 25 new strains. Alllionia 34: 39–43.

    Google Scholar 

  • Blum, J. D., A. Klaue, C. A. Nezat, C. T. Driscoll, C. E. Johnson, T. G. Siccama, C. Eagar, T. J. Fahey & G. E. Likens. 2002. Mycorrhizal dissolution of apatite as an important calcium source in base-poor forest ecosystems. Nature 417: 729–731.

    Article  PubMed  CAS  Google Scholar 

  • Bodeker, I. T. M., C. M. R. Nygren, A. F. S. Taylor, A. Olson & B. D. Lindahl. 2009. ClassII peroxidase-encoding genes are present in a phylogenetically wide range of ectomycorrhizal fungi. The ISME Journal 3: 1105–1115.

    Article  CAS  Google Scholar 

  • Bois, G., Y. Piché, M. Y. P. Fung & D. P. Khasa. 2005. Mycorrhizal inoculum potentials of pure reclamation materials and revegetated tailing sands from the Canadian oil sand industry. Mycorrhiza 15: 149–158.

    Article  PubMed  CAS  Google Scholar 

  • Borchers, J. G. & D. A. Perry. 1992. The influence of soil texture and aggregation on carbon and nitrogen dynamics in southwest Oregon forests and clearcuts. Canadian Journal of Forest Research 22: 298–305.

    Article  CAS  Google Scholar 

  • Bougher, N. L., T. S. Grove & N. Malajczuk. 1990. Growth and phosphorus acquisition of karri (Eucalyptus diversicolor F. Muell.) seedlings inoculated with ectomycorrhizal fungi in relation to phosphorus supply. New Phytologist 114: 77–85.

    Article  CAS  Google Scholar 

  • Bowen, G. D. & C. Theodorou. 1979. Interactions between bacteria and ectomycorrhizal fungi. Soil Biology and Biochemistry 11: 119–126.

    Article  Google Scholar 

  • Bradbury, S. M., R. M. Danielson & S. Visser. 1998. Ectomycorrhizas of regenerating stands of lodgepole pine (Pinus contorta). Canadian Journal of Botany 76: 218–277.

    Google Scholar 

  • Branzanti, M. B., E. Roach & E. Pisi. 1999. Effect of ectomycorrhizal fungi on chestnut ink disease. Mycorrhiza 9: 103–109.

    Google Scholar 

  • Brearley, F. Q. 2011. The Importance of ectomycorrhizas for the growth of Dipterocarps and the efficacy of ectomycorrhizal inoculation schemes. Soil Biology 25: 3–17.

    Article  Google Scholar 

  • Brown, M. T. & D. A. Wilkins. 1985. Zinc tolerance of Amanita and Paxillus. Transactions of the British Mycological Society 84: 367–369.

    Article  Google Scholar 

  • Brundrett, M. 2004. Diversity and classification of mycorrhizal associations. Biological review 79: 473–495.

    Article  Google Scholar 

  • Buée, M., P. E. Courty, D. Mignot & J. Garbaye. 2007. Soil niche effect on species diversity and catabolic activities in an ectomycorrhizal fungal community. Soil Biology & Biochemistry 39: 1947–1955.

    Article  CAS  Google Scholar 

  • ———, D. Vairelles & J. Garbaye. 2005. Year-round monitoring of diversity and potential metabolic activity of the ectomycorrhizal community in a beech (Fagus sylvatica) forest subjected to two thinning regimes. Mycorrhiza 15: 235–245.

    Article  PubMed  Google Scholar 

  • Burke, R. M. & J. W. G. Cairney. 2002. Laccases and other polyphenol oxidases in ecto and ericoid mycorrhizal fungi. Mycorrhiza 12: 105–116.

    Article  PubMed  CAS  Google Scholar 

  • Burns, G. B. & R. P. Dick. 2002. Enzymes in the environment; Activity, ecology and applications. NY, Marcel Dekker, New York.

    Book  Google Scholar 

  • Byrd, K. B., V. T. Parker, D. R. Vogler & K. W. Cullings. 2000. The influence of clear-cutting on ectomycorrhizal fungus diversity in a lodgepole pine (Pinus contorta) stand, Yellowstone National Park, Wyoming, and Gallatin National Forest, Montana. Canadian Journal of Botany 78: 149–156.

    Google Scholar 

  • Cairney, J. W. G. & A. A. Meharg. 2002. Interactions between ectomycorrhizal fungi and soil saprotrophs: implications for decomposition of organic matter in soils and degradation of organic pollutants in the rhizosphere. Canadian Journal of Botany 80: 803–809.

    Article  Google Scholar 

  • Cairney, J. W. J. & S. Chambers. 1999. Ectomycorrhizal Fungi: key genera in profile. Springer-Verlag, Berlin, New York. 370 pp.

    Book  Google Scholar 

  • Calvaruso, C., M. P. Turpault & P. Frey-Klett. 2006. Root-associated bacteria contribute to mineral weathering and to mineral nutrition in trees: a budgeting analysis. Applied and Environmental Microbiology 72: 1258–1266.

    Article  PubMed  CAS  Google Scholar 

  • ———, ———, E. Leclerc & P. Frey-Klett. 2007. Impact of ectomycorrhizosphere on the functional diversity of soil bacterial and fungal communities from a forest stand in relation to nutrient mobilization processes. Microbial Ecology 54: 567–577.

    Article  PubMed  Google Scholar 

  • Caravaca, F., M. M. Alguacil, P. Torres & A. Roldan. 2005. Survival of inocula and native AM fungi species associated with shrubs in a degraded Mediterranean ecosystem. Soil Biology and Biochemistry 37: 227–233.

    Article  CAS  Google Scholar 

  • Chakravarty, P., R. L. Peterson & B. E. Ellis. 1991. Interactions between the ectomycorrhizal fungus Paxillus involutus, damping-off fungi and Pinus resinosa seedlings. Journal of Phytopathology 132: 207–218.

    Article  Google Scholar 

  • Chalot, M. & A. Bran. 1998. Physiology of organic nitrogen acquisition by ectomycorrhizal fungi and ectomycorrhizas. FMES Microbiology Review 22: 21–44.

    Article  CAS  Google Scholar 

  • Cline, E. T., J. F. Ammirati & R. L. Edmonds. 2005. Does proximity to mature trees influence ectomycorrhizal fungus communities of Douglas-fir seedlings? New Phytologist 166: 993–1009.

    Article  PubMed  CAS  Google Scholar 

  • Colpaert, J. V. 2008. Heavy metal pollution and genetic adaptations in ectomycorrhizal fungi. In: Avery, S., Stratford, M. and van West, P. (Eds). Stress in yeasts and filamentous fungi. British Mycological Society Symposia Series 27: 157–173.

  • ——— & K. K. van Tichelen. 1996. Decomposition, nitrogen and phosphorus mineralization from beech leaf litter colonized by ectomycorrhizal or litter decomposing basidiomycetes. New Phytologist 134: 123–132.

    Article  Google Scholar 

  • Courty, P. E., N. Breda & J. Garbaye. 2007. Relation between oak tree phenology and the secretion of organic matter degrading enzymes by Lactarius quietus ectomycorrhizas before and during bud break. Soil biology and Biochemistry 39: 1655–1663.

    Article  CAS  Google Scholar 

  • ———, M. Buee, A. Diedhio & P. Frey-Klett. 2010. The role of ectomycorrhizal communities in forest ecosystem processes: new perspectives and emerging concepts. Soil biology & Biochemistry 42: 679–698.

    Article  CAS  Google Scholar 

  • ———, R. Pouysegur, M. Buee & J. Garba. 2005. Laccase and phosphatase activities of the dominant ectomycorrhizal types in the lowland Oak forest. Soil biology and Biochemistry 20: 1–4.

    Google Scholar 

  • ———, ———, M. Buée & J. Garbaye. 2006. Laccase and phosphatase activities of the dominant ectomycorrhizal types in a lowland oak forest. Soil Biology & Biochemistry 38: 1219–1222.

    Article  CAS  Google Scholar 

  • Criquet, S., E. Ferre, A. M. Farnet & J. Le Petit. 2004. Annual dynamics of phosphatase activities in an evergreen oak litter influence of biotic and abiotic factors. Soil Biology & Biochemistry 36: 1111–1118.

    Article  CAS  Google Scholar 

  • Dahlberg, A. 2001. Community ecology of ectomycorrhizal fungi: an advancing interdisciplinary field. New Phytologist 150: 555–562.

    Article  Google Scholar 

  • ——— 2002. Effects of fire on ectomycorrhizal fungi in Fennoscandian boreal forests. Silva Fennica 36: 69–80.

    Google Scholar 

  • Danielson, R. M. & S. Visser. 1989. Host response to inoculation and behaviour of induced and indigenous ectomycorrhizal fungi of jack pine grown on oil-sands tailings. Can. J. For. Res. 19: 1412–1421.

    Article  Google Scholar 

  • Donnelly, P. K., J. A. Entry & D. L. Crawford. 1993. Degradation of atrazine and 2–4 dichlorophenoxyacetic acid by mycorrhizal fungi at three nitrogen concentrations in vitro. Applied and Environmental Microbiology 59: 2642–2647.

    PubMed  CAS  Google Scholar 

  • Duchesne, L. C., R. L. Peterson & B. E. Ellis. 1988. Interaction between the ectomycorrhizal fungus Paxillus involutus and Pinus resinosa induces resistance to Fusarium oxysporium. Canadian Journal of Botany 66: 558–562.

    Article  Google Scholar 

  • Dunabeitia, M., N. Rodriguez, I. Salcedo & E. Sarrionandia. 2004. Field mycorrhization and its influence on the establishment and development of the seedlings in a broadleaf plantation in the Basque country. For. Ecol. Manage. 195: 129–139.

    Article  Google Scholar 

  • Duponnois, R. & J. Garbaye. 1990. Some mechanisms involved in growth stimulation of ectomycorrhizal fungi by bacteria. Canadian Journal of Botany 68: 2148–2152.

    Article  Google Scholar 

  • Durall, D. M., D. M. Todd & J. M. Trappe. 1994. Decomposition of 14C-labelled substrates by ectomycorrhizal fungi in association with Douglas fir. New Phytologist 127: 725–729.

    Article  CAS  Google Scholar 

  • Ernst, W. H. O. 1985. Impact of mycorrhizae on metal uptake and translocation by forest plants. In proceedings of the international conference ‘heavy metals in the environment’, (Eds). Lebbas, T. D. pp. 596–599.

  • Essen, S. A., D. Bylund, S. J. M. Holmström, M. Moberg & U. S. Lundstrom. 2006. Quantification of hydroxamate siderophores in soil solutions of podzolic soil profiles in Sweden. Biometals 19: 269–282.

    Article  PubMed  CAS  Google Scholar 

  • Farquhar, M. L. & R. L. Peterson. 1991. Later events in suppression of Fusarium root rot of red pine seedlings by the ectomycorrhizal fungus Paxillus involutus. Canadian journal of botany 69: 1372–1383.

    Article  Google Scholar 

  • Feller, M. C. 1998. The influence of fire severity, not fire intensity, on understorey vegetation biomass in British Columbia. Proceedings of the 13th Fire and Forest Meteorology Conference, Lorne, Australia, 1996, pp. 335–348.

  • Finlay, R. D. 2008. Ecological aspects of mycorrhizal symbiosis: with special emphasis on the functional diversity of interactions involving the extraradical mycelium. Journal of Experimental Botany 59: 1115–1128.

    Article  PubMed  CAS  Google Scholar 

  • ——— & D. J. Read. 1986. The structure and function of the vegetative mycelium of ectomycorrhizal plants. I. Translocation of C-labelled carbon between plants interconnected by a common mycelium. New Phytologist 103: 143–156.

    Article  Google Scholar 

  • ———, H. Ek, G. Odham & B. Soderstrom. 1988. Mycelial uptake, translocation and assimilation of nitrogen from 15N labelled ammonium by Pinus sylvestris plants infected with four different ectomycorrhizal fungi. New Phytologist 110: 59–66.

    Article  Google Scholar 

  • Fitter, A. H., J. D. Graves, N. K. Watkins, D. Robinson & C. Scrimgeour. 1998. Carbon transfer between plants and its control in networks of arbuscular mycorrhizas. Functional Ecology 12: 406–412.

    Article  Google Scholar 

  • Frank, A. B. 1885. Uber die auf Wurzelzymbiose beruhende Ernährung gewisser Bäume durch unterirdische Pilze. Berichte der Deutschen Botanischen Gesellschaft 3: 128–145.

    Google Scholar 

  • Frey, P., P. Frey-Klett, J. Garbaye, O. Berge & T. Heulin. 1997. Metabolic and genotypic fingerprinting of fluorescent pseudomonads associated with the Douglas fir–Laccaria bicolor mycorrhizosphere. Applied and Environmental Microbiology 63: 1852–1860.

    PubMed  CAS  Google Scholar 

  • Frey-Klett, P., M. Chavatte, M. L. Clausse, S. Courrier, C. Le Roux, J. Raaijmakers, M. G. Martinotti, J. C. Pierrat & J. Garbaye. 2005. Ectomycorrhizal symbiosis affects functional diversity of rhizosphere fluorescent pseudomonads. New Phytologist 165: 317–328.

    Article  PubMed  Google Scholar 

  • ——— & J. Garbaye. 2005. Mycorrhiza helper bacteria: a promising model for the genomic analysis of fungal-bacterial interactions. New Phytologist 168: 4–8.

    Article  PubMed  CAS  Google Scholar 

  • Gadgil, R. & P. Gadgil. 1975. Suppression of litter decomposition by mycorrhizal roots of Pinus radiata. New Zealand Journal of Forestry Science 5: 35–411975.

    Google Scholar 

  • Galli, U., H. Schuepp & C. Brunold. 1994. Heavy metal binding by mycorrhizal fungi. Physiol. Plantarum 92: 364–368.

    Article  CAS  Google Scholar 

  • Garbaye, J. 1994. Helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytologist 128: 197–210.

    Article  Google Scholar 

  • Gaur, A. & A. Adholeya. 2004. Prospect of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Current Science 86: 528.

    CAS  Google Scholar 

  • Genney, D. R., I. J. Alexander, K. Killham & A. A. Meharg. 2004. Degradation of the polycyclic aromatic hydrocarbon (PAH) fluorene is retarded in a Scots pine ectomycorrhizosphere. New Phytologist 163: 641–649.

    Article  CAS  Google Scholar 

  • Gomez, D. M., R. G. Anthony & J. M. Trappe. 2003. The influence of thinning on production of hypogeous fungus sporocarps in Douglas fir forests in the northern Oregon Coast Range. Northwest Science 77: 308–319.

    Google Scholar 

  • Gramms, G., T. Günther & W. Fritsche. 1998. Spot tests on oxidative enzymes in ectomycorrhizal, wood- and litter decaying fungi. Mycological Research 102: 67–72.

    Article  Google Scholar 

  • Gramss, G., B. Kirsche, B. Voigt, T. Günther & W. Fritsche. 1999. Conversion rates of five polycyclic aromatic hydrocarbons in liquid cultures of fifty-eight fungi and the concomitant production of oxidative enzymes. Mycological Research 8: 1009–1018.

    Article  Google Scholar 

  • Griffiths, B. & D. Robinson. 1992. Root-induced nitrogen mineralization-a nitrogen-balance model. Plant and Soil 139: 253–263.

    Article  CAS  Google Scholar 

  • Hagerman, S. M., S. Sakakibara & D. M. Durall. 2001. The potential for woody understory plants to provide refuge for ectomycorrhizal inoculum at an interior Douglas-fir forest after clear-cut logging. Canadian Journal of Forest Research 31: 711–723.

    Article  Google Scholar 

  • Hameeda, B., Y. H. K. Reddy, O. P. Rupela, G. N. Kumar & G. Reddy. 2006. Effect of carbon substrates on rock phosphate solubilization by bacteria from composts and macrofauna. Current Microbiology 53: 298–302.

    Article  PubMed  CAS  Google Scholar 

  • Hampp, R. & C. Schaeffer. 1999. Mycorrhiza: carbohydrate and energy metabolism. Pp 273–303. In: A. Varma & B. Hock (eds). Mycorrhiza: Structure, Function, Molecular Biology and Biotechnology. Springer, Berlin Heidelberg, New York.

    Google Scholar 

  • Hayes, J. P., S. P. Cross & P. W. McIntire. 1986. Seasonal variation in mycophagy by the western red-backed vole, Clethrionomys californicus, in southwestern Oregon. Northwest Science 60: 250–257.

    Google Scholar 

  • He, X. H., C. Critchley, H. Ng & C. S. Bledsoe. 2004. Reciprocal N (15NH4 + or 15N03) transfer between non N2-fixing Eucalyptus maculata and N2-fixing Casuarina cunninghamiana linked by the ectomycorrhizal fungus Pisolithus sp. New Phytologist 163: 629–640.

    Article  Google Scholar 

  • Heinemeyer, A., I. P. Hartley, S. P. Evans, J. A. C. de la Fuente & P. Ineson. 2007. Forest soil CO2 flux: uncovering the contribution and environmental responses of ectomycorrhizas. Global Change Biology 13: 1786–1797.

    Article  Google Scholar 

  • ———, P. Ineson, N. Ostle & A. H. Fitter. 2006. Respiration of the external mycelium in the arbuscular mycorrhizal symbiosis shows strong dependence on recent photosynthates and acclimation to temperature. New Phytologist 171: 159–170.

    Article  PubMed  CAS  Google Scholar 

  • Herr, D. G., L. C. Duchesne, R. Tellier, R. S. Mc Alpine & R. L. Peterson. 1994. Effect of prescribed burning on the ectomycorrhizal infectivity of a forest soil. International Journal of Wildland Fire 4: 95–102.

    Article  Google Scholar 

  • Hibbett, D. S., L. B. Gilbert & M. J. Donoghue. 2000. Evolutionary instability of ectomycorrhizal symbioses in basidiomycetes. Nature 407: 506–508.

    Article  PubMed  CAS  Google Scholar 

  • Hidelbrant, U., M. Regvar & H. Bothe. 2007. Asbuscular micorrhiza and heavy metals tolerance. Phytochemisty 68: 138–146.

    Google Scholar 

  • Hobbie, E. A. 2006. Carbon allocation to ectomycorrhizal fungi correlates with belowground allocation in culture studies. Ecology 87: 563–569.

    Article  PubMed  Google Scholar 

  • Hobbie, J. E. & E. A. Hobbie. 2006. 15N content in symbiotic fungi and plants estimates nitrogen and carbon flux rates in arctic tundra. Ecology 87: 563–569.

    Article  PubMed  Google Scholar 

  • Hobbie, E. A. & T. R. Horton. 2007. Evidence that saprotrophic fungi mobilize carbon and mycorrhizal fungi mobilise nitrogen during litter decomposition. New Phytologist 173: 447–449.

    Article  PubMed  CAS  Google Scholar 

  • ———, N. S. Weber, J. M. Trappe & G. J. Van Klinken. 2002. Using radiocarbon to determine the mycorrhizal status of fungi. New Phytologist 156: 129–136.

    Article  Google Scholar 

  • Hoffland, E., R. Giesler, A. G. Jongmans & N. van Breemen. 2002. Increasing feldspar tunneling by fungi across a north Sweden podzol chronosequence. Ecosystems 1: 11–22.

    Article  Google Scholar 

  • Hogberg, M. N. & P. Hogberg. 2002. Extramatrical ectomycorrhizal mycelium contributes one-third of microbial biomass and produces, together with associated roots, half the dissolved organic carbon in a forest soil. New Phytologist 154: 791–795.

    Article  CAS  Google Scholar 

  • Hogberg, P., A. Nordgren & N. Buchmann. 2001. Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411: 789–792.

    Article  PubMed  CAS  Google Scholar 

  • ———, A. H. Plamboeck, A. F. S. Taylor & P. M. A. Fransson. 1999. Natural 13C abundance reveals trophic status of fungi and host-origin of carbon in mycorrhizal fungi in mixed forests. Proceedings of the National Academy of Sciences of the United States of America 96: 8534–8539.

    Article  PubMed  CAS  Google Scholar 

  • Horton, T. R., R. Molina & K. Hood. 2005. Douglas-fir ectomycorrhizae in 40- and 400- year-old stands: mycobiont availability to late successional western hemlock. Mycorrhiza 15: 393–403.

    Article  PubMed  CAS  Google Scholar 

  • Izumi, H., I. C. Anderson, I. J. Alexander, K. Killham & E. R. Moore. 2006. Endobacteria in some ectomycorrhiza of Scots pine (Pinus sylvestris). FEMS Microbiology and Ecology 56: 34–43.

    Article  CAS  Google Scholar 

  • Jargeat, P., C. Cosseau, B. Ola’h, A. Jauneau, P. Bonfante, J. Batut & G. Becard. 2004. Isolation, free-living capacities, and genome structure of ‘Candidatus Glomeribacter gigasporarum’, the endocellular bacterium of the mycorrhizal fungus Gigaspora margarita. J Bacteriology 186: 6876–6884.

    Article  CAS  Google Scholar 

  • Jayakumar, P. & T. K. Tan. 2005. Phosphorus solubilization by ectomycorrhizal Pisolithus tinctorius in pure culture and in association with Acacia mangium. Symbiosis 39: 125–130.

    CAS  Google Scholar 

  • Jentschke, G., S. Winter & D. L. Godbold. 1999. Ectomycorrhizas and cadmium toxicity in Norway spruce seedlings. Tree Physiology 19: 23–30.

    Article  PubMed  CAS  Google Scholar 

  • Johansson, J. F., L. R. Paul & R. D. Finlay. 2004. Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiology Ecology 48: 1–13.

    Article  PubMed  CAS  Google Scholar 

  • Joner, E. J., C. Leyval & J. V. Colpaert. 2006. Ectomycorrhizas impede phytoremediation of polycyclic aromatic hydrocarbons (PAHs) both within and beyond the rhizosphere. Environmental Pollution 142: 34–38.

    Article  PubMed  CAS  Google Scholar 

  • Jones, D. L., P. G. Dennis, A. G. Owen & P. A. W. van Hees. 2003a. Organic acid behavior in soils-misconceptions and knowledge gaps. Plant and Soil 248: 31–41.

    Article  CAS  Google Scholar 

  • Jones, M. D. & T. C. Hutchinson. 1986. The effect of mycorrhizal infection on the response of Betula papyrifera to nickel and copper. New Phytologist 102: 429–442.

    Article  CAS  Google Scholar 

  • ———, D. M. Durall & P. B. Tinker. 1991. Fluxes of carbon and phosphorus between symbionts in willow ectomycorrhizas and their changes with time. New Phytologist 118: 99–106.

    Article  Google Scholar 

  • ———, ——— & J. W. G. Cairney. 2003b. Ectomycorrhizal fungal communities in young forest stands regenerating after clearcut logging. New Phytologist 157: 399–422.

    Article  Google Scholar 

  • Jonsson, L., A. Dahlberg, M. C. Nilsson, O. Zackrisson & O. Karen. 1999. Ectomycorrhizal fungal communities in late-successional Swedish boreal forests, and their composition following wildfire. Molecular Ecology 8: 205–215.

    Article  Google Scholar 

  • Kinoshita, A., T. Satomura, Y. Hashimoto & T. Horikoshi. 2007. Fungal content of ectomycorrhizal tips: comparison among 13 tree species. Mycoscience 48: 160–168.

    Article  Google Scholar 

  • Kogel-Knabner, I. 2002. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biology and Biochemistry 34: 139–162.

    Article  CAS  Google Scholar 

  • Koide, R. T., J. N. Sharda, J. R. Herr & G. M. Malcolm. 2008. Ectomycorrhizal fungi and the biotrophyesaprotrophy continuum. New Phytologist 178: 230–233.

    Article  PubMed  Google Scholar 

  • Kope, H. H., Y. S. Tsantrizos, J. A. Fortin & K. K. Ogilvie. 1991. Parahydroxybenzoylformic acid and (R)-(−)-para-hydroxymandelic acid, 2 antifungal compounds isolated from the liquid culture of the ectomycorrhizal fungus Pisolithus arhizus. Canadian Journal of Microbiology 37: 258–264.

    Article  PubMed  CAS  Google Scholar 

  • Korb, J. E., N. C. Johnson & W. W. Covington. 2003. Arbuscular mycorrhizal propagule densities respond rapidly to ponderosa pine restoration treatments. Journal of Applied Ecology 40: 101–110.

    Article  Google Scholar 

  • Kretzer, A. M., D. L. Luoma, R. Molina & J. W. Spatafora. 2003. Taxonomy of the Rhizopogon vinicolor species complex based on analysis of its sequences and microsatellite loci. Mycologia 95: 480–487.

    Article  PubMed  CAS  Google Scholar 

  • Kuikka, K., E. Harma & A. Markkola. 2003a. Severe defoliation of Scots pine reduces reproductive investment by ectomycorrhizal symbionts. Ecology 84: 2051–2061.

    Article  Google Scholar 

  • Lakhanpal, T. N. and Kumar, S. 1993. Regeneration of Cold Desert Pine of N.W. Himalayas (India)-A Preliminary Study. In In: Roundy, Bruce A. McArthur, E. Durant, Haley, Jennifer S. Mann, David, K. comps. 1995. Proceedings: wildland shrub and arid land restoration symposium; 1993 October 19–21; Las Vegas, NV. Gen. Tech. Rep. INT-GTR-315. Ogden, UT: U.S.

  • Landeweert, R., E. Hoffland, R. D. Finlay, T. Kuyper & N. van Breemen. 2001. Linking plants to rocks. Ectomycorrhizal fungi mobilize nutrients from minerals. Trends in Ecology and Evolution 16: 248–254.

    Article  PubMed  Google Scholar 

  • Langley, J. A., S. K. Chapman & B. A. Hungate. 2006. Ectomycorrhizal colonization slows root decomposition: the post-mortem fungal legacy. Ecology Letters 9: 955–959.

    Article  PubMed  Google Scholar 

  • Leake, J., D. Johnson, D. Donnelly, G. Muckle, L. Boddy & D. Read. 2004. Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Canadian Journal of Botany 82: 1016–1045.

    Article  Google Scholar 

  • Leake, J. R., D. P. Donnelly, E. M. Saunders, L. Boddy & D. J. Read. 2001. Rates and quantities of carbon flux to ectomycorrhizal mycelium following 14C pulse labelling of Pinus sylvestris seedlings: effects of litter patches and interaction with a wood-decomposer fungus. Tree Physiology 21: 71–82.

    Article  PubMed  CAS  Google Scholar 

  • ——— & W. Miles. 1996. Phosphodiesters as mycorrhizal P sources I. Phosphodiesterase production and the utilisation of DNA as a phosphorous source by the ericoid mycorrhizal fungus Hymenoscyphus ericae. New Phytologist 132: 435–443.

    Article  CAS  Google Scholar 

  • ———, Donnelly, D. P. and Boddy, L. 2002. Interaction between ectomycorrhizal and saprotrophic fungi. In: van der Heijden, M. G. A. and Sanders, I. (Eds.) Mycorrhizal Ecology. Ecological Studies 157: 345–372.

  • Lehr, N. A., S. D. Schrey, R. Bauer, R. Hampp & M. T. Tarkka. 2007. Suppression of plant defence response by a mycorrhiza helper bacterium. New Phytologist 174: 892–903.

    Article  PubMed  CAS  Google Scholar 

  • Leyval, C. & J. Berthelin. 1989. Interactions between Laccaria laccata, Agrobacterium radiobacter and beech roots: influence on P, K, Mg and Fe mobilization from minerals and plant growth. Plant and Soil 117: 103–110.

    Article  CAS  Google Scholar 

  • Li, C. Y. & M. A. Castellano. 1987. Azospirillum isolated from within sporocarps of the mycorrhizal fungi Hebeloma crustuliniforme, Laccaria laccata and Rhizopogon vinicolor. Transactions of the British Mycological Society 884: 563–564.

    Article  Google Scholar 

  • Lilleskov, E. A., E. A. Hobbie & T. J. Fahey. 2002. Ectomycorrhizal fungal taxa differing in response to nitrogen deposition also differ in pure culture organic nitrogen use and natural abundance of nitrogen isotopes. New Phytologist 154: 219–231.

    Article  CAS  Google Scholar 

  • Lin, T. F., H. I. Huang, F. T. Shen & C. C. Young. 2006. The protons of gluconic acid are the major factor responsible for the dissolution of tricalcium phosphate by Burkholderia cepacia CC-A174. Bioresources Technology 97: 957–960.

    Article  CAS  Google Scholar 

  • Lindahl, B. D. & A. F. S. Taylor. 2004. Occurrence of N-acetylhexosaminidase encoding genes in ectomycorrhizal basidiomycetes. New Phytologist 164: 193–199.

    Article  CAS  Google Scholar 

  • ———, R. D. Finlay & J. W. G. Cairney. 2005. Enzymatic activities of mycelia in mycorrhizal fungal communities. Pp 331–348. In: J. Dighton, P. Oudemans, & J. White (eds). The fungal community, its organization and role in the ecosystem. Marcel Dekker, New York.

    Google Scholar 

  • Lindahl, B., K. Ihrmark, J. Boberg, S. E. Trumbore, P. Hogberg, J. Stenlid & R. D. Finlay. 2007. Spatial separation of litter decomposition and mycorrhizal nutrient uptake in a boreal forest. New Phytologist 173: 611–620.

    Article  PubMed  CAS  Google Scholar 

  • ———, J. Stenlid & R. Finlay. 2001. Effects of resource availability on mycelial interactions and P-32 transfer between a saprotrophic and an ectomycorrhizal fungus in soil microcosms. FEMS Microbiology Ecology 38: 43–52.

    Article  CAS  Google Scholar 

  • Luis, P., H. Kellner, B. Zimdars, U. Langer, F. Martin & F. Buscot. 2005. Patchiness and spatial distribution of laccase genes of ectomycorrhizal, saprotrophic and unknown basidiomycetes in the upper horizons of a mixed forest cambisol. Microbial Ecology 50: 570–579.

    Article  PubMed  CAS  Google Scholar 

  • Luoma, D. L., R. Frenkel & J. M. Trappe. 1991. Fruiting of hypogeous fungi in Oregon Douglas-fir forest: seasonal and habitat variation. Mycologia 83: 335–353.

    Article  Google Scholar 

  • Machuca, A., G. Pereira, A. Aguiar & A. M. F. Milagres. 2007. Metal-chelating compounds produced by ectomycorrhizal fungi collected from pine plantations. Letters in Applied Microbiology 44: 7–12.

    Article  PubMed  CAS  Google Scholar 

  • Maestre, F. T. & J. Cortina. 2004. Are Pinus halepensis plantations useful as a restauration tool in semiarid Mediterranean areas? For. Ecol. Manag. 198: 303–317.

    Article  Google Scholar 

  • Mahmood, S., R. D. Finlay, S. Erland & H. Wallander. 2001. Solubilisation and colonization of wood ash by ectomycorrhizal fungi isolated from a wood ash fertilised spruce forest. FEMS Microbiology Ecology 35: 151–161.

    Article  PubMed  CAS  Google Scholar 

  • Maier, A., J. Riedlinger, H. P. Fiedler & R. Hampp. 2004. Actinomycetales bacteria from a spruce stand: characterization and effects on growth of root symbiotic, and plant parasitic soil fungi in dual culture. Mycological Progress 3: 129–136.

    Article  Google Scholar 

  • Malajczuk, N., P. Redell & M. Brundrett. 1994. The role of ectomycorrhizal fungi in minesite reclamation. In: F. L. Pfleger & R. G. Linderman (eds). Mycorrhizae and plant health. The American Phytopathological Society, St Paul, MN.

    Google Scholar 

  • Martin, F., A. Aerts, D. Ahrén, A. Brun, F. Duchaussoy, A. Kohler, E. Lindquist, A. Salamov, H. J. Shapiro, J. Wuyts, D. Blaudez, M. Buée, P. Brokstein, B. Canbäck, D. Cohen, P. E. Courty, P. M. Coutinho, E. G. J. Danchin, C. Delaruelle, J. C. Detter, A. Deveau, S. DiFazio, S. Duplessis, L. Fraissinet-Tachet, E. Lucic, P. Frey-Klett, C. Fourrey, I. Feussner, G. Gay, J. Gibon, J. Grimwood, P. J. Hoegger, P. Jain, S. Kilaru, J. Labbé, Y. C. Lin, F. Le Tacon, R. Marmeisse, D. Melayah, B. Montanini, M. Muratet, U. Nehls, H. Niculita-Hirzel, M. P. Oudot-Le Secq, V. Pereda, M. Peter, H. Quesneville, B. Rajashekar, M. Reich, N. Rouhier, J. Schmutz, T. Yin, M. Chalot, B. Henrissat, U. Kües, S. Lucas, Y. Van de Peer, G. Podila, A. Polle, P. J. Pukkila, P. M. Richardson, P. Rouzé, I. Sanders, J. E. Stajich, A. Tunlid, G. Tuskan & I. Grigoriev. 2008. The genome sequence of the basidiomycete fungus Laccaria bicolor provides insights into the mycorrhizal symbiosis. Nature 452: 88–92.

    Article  PubMed  CAS  Google Scholar 

  • ———, V. Boiffin & P. E. Pfeffer. 1998. Carbohydrate and amino acid metabolism in the Eucalyptus globuluse Pisolithus tinctorius ectomycorrhiza during glucose utilization. Plant Physiology 118: 627–635.

    Article  PubMed  CAS  Google Scholar 

  • ———, G. R. Stewart, I. Genetet & F. Le Tacon. 1986. Assimilation of 15NH4 + by beech (Fagus sylvatica) ectomycorrhizas. New Phytologist 102: 85–94.

    Article  CAS  Google Scholar 

  • Marx, D. H. 1973. Ectomycorrhizae as biological deterrents to pathogenic root infections. Annual Review of Phytopathology 1: 429–454.

    Google Scholar 

  • ——— 1991. The practical significance of ectomycorrhizae in forest establishment. In: Ecophysiology of ectomycorrhizae of forest trees, The Marcus Wallenberg Foundation ed., Stockholm, Sweden, Symposium Proceedings, 7, pp. 54–90.

  • McGuire, K. L. 2007. Common ectomycorrhizal networks may maintain monodominance in a tropical rain forest. Ecology 88: 567–574.

    Article  PubMed  Google Scholar 

  • Medina, A., A. Probanza, F. J. Gutierrez-Manero & R. Azcon. 2003. Interactions of arbuscular-mycorrhizal fungi and Bacillus strains and their effects on plant growth, microbial rhizosphere activity (thymidine and leucine incorporation) and fungal biomass (ergosterol and chitin). Appl. Soil Ecol. 22: 15–28.

    Article  Google Scholar 

  • Meharg, A. A. & J. W. G. Cairney. 2000. Ectomycorrhizas: extending the capacities of rhizosphere remediation? Soil Biology and Biochemistry 32: 1475–1484.

    Article  CAS  Google Scholar 

  • ———, ——— & N. Maguire. 1997a. Mineralization of 2, 4 dichlorophenol by ectomycorrhizal fungi in axenic culture and in symbiosis with pine. Chemosphere 34: 2495–2504.

    Article  CAS  Google Scholar 

  • ———, G. R. Dennis & J. W. G. Cairney. 1997b. Biotransformation of 2, 4, 6 trinitrotoluene (TNT) by ectomycorrhizal basidiomycetes. Chemosphere 35: 513–521.

    Article  CAS  Google Scholar 

  • Millard, P., M. Sommerkorn & G. A. Grelet. 2007. Environmental change and carbon limitation in trees: a biochemical, ecophysiological and ecosystem appraisal. New Phytologist 175: 11–28.

    Article  PubMed  CAS  Google Scholar 

  • Miller, R. M. & J. D. Jastrow. 1992. The application of VA mycorrhizae to ecosystem restoration and reclamation. In: M. Allen (ed). Mycorrhizal functioning. Chapman & Hall, New York.

    Google Scholar 

  • Molina, R., J. M. Trappe, L. C. Grubisha & J. W. Spatafora. 1999. Rhizopogon. In: J. Cairney & S. M. Chambers (eds). Ectomycorrhizal Fungi: Key Genera in Profile. Springer Verlag, Berlin.

    Google Scholar 

  • Morin, C., J. Samson & M. Dessureault. 1999. Protection of black spruce seedlings against Cylindrocladium root rot with ectomycorrhizal fungi. Canadian Journal of Botany 77: 169–174.

    Google Scholar 

  • Mosca, E., L. Montecchio, L. Scattolin & J. Garbaye. 2007. Enzymatic activities of three ectomycorrhizal types of Quercus robur L. in relation to tree decline and thinning. Soil Biology and Biochemistry 39: 2897–2904.

    Article  CAS  Google Scholar 

  • Nagendran, S., H. E. Hallen-Adams, J. M. Paper, N. Aslam & J. D. Walton. 2009. Reduced genomic potential for secreted plant cell-wall-degrading enzymes in the ectomycorrhizal fungus Amanita bisporigera, based on the secretome of Trichoderma reesei. Fungal Genetics and Biology 46: 427–435.

    Article  PubMed  CAS  Google Scholar 

  • Nara, K. 2006. Ectomycorrhizal networks and seedling establishment during early primary succession. New Phytologist 169: 169–178.

    Article  PubMed  CAS  Google Scholar 

  • ——— & T. Hogetsu. 2004. Ectomycorrhizal fungi on established shrubs facilitate subsequent seedling establishment of successional plant species. Ecology 85: 1700–1707.

    Article  Google Scholar 

  • Nautiyal, C. S., S. Bhadauria, P. Kumar, H. Lai, R. Mondal & D. Verma. 2000. Stress induced phosphate solubilization in bacteria isolated from alkaline soils. FEMS Microbiology Letters 182: 291–296.

    Article  PubMed  CAS  Google Scholar 

  • Nehls, U., A. Bock, W. Einig & R. Hampp. 2001a. Excretion of two proteases by ectomycorrhizal fungus Amanita muscaria. Plant Cell and Environment 24: 741–747.

    Article  CAS  Google Scholar 

  • ——— & R. Hampp. 2000. Carbon allocation in ectomycorrhizas. Physiological and Molecular Plant Pathology 57: 95–100.

    Article  CAS  Google Scholar 

  • ———, S. Mikolajewski, E. Magel & R. Hampp. 2001b. Carbohydrate metabolism in ectomycorrhizas: gene expression, monosaccharide transport and metabolic control. New Phytologist 150: 533–541.

    Article  CAS  Google Scholar 

  • Neilands, J. B. 1995. Siderophores. Structure and fonction of microbial iron transport compounds. Journal of Biological Chemistry 270: 26723–26726.

    PubMed  CAS  Google Scholar 

  • Nilsson, L. O., R. Giesler, E. Baath & R. H. Wallande. 2005. Growth and biomass of mycorrhizal mycelia in coniferous forests along short natural nutrient gradients. New Phytologist 165: 613–622.

    Article  PubMed  Google Scholar 

  • Nygren, C. M., J. Edqvist, M. Elfstrand, G. Heller & A. F. S. Taylor. 2007. Detection of extracellular protease activity in different species and genera of ectomycorrhizal fungi. Mycorrhiza 17: 241–248.

    Article  PubMed  CAS  Google Scholar 

  • Ochs, M. 1996. Influence of humified and non-humified natural organic compounds on mineral dissolution. Chemical Geology 132: 119–124.

    Article  CAS  Google Scholar 

  • Offre, P., B. Pivato, S. Siblot, E. Gamalero, T. Corberand, P. Lemanceau & C. Mougel. 2007. Identification of bacterial groups preferentially associated with mycorrhizal roots of Medicago truncatula. Applied and Environmental Microbiology 73: 913–921.

    Article  PubMed  CAS  Google Scholar 

  • Olsson, P. A. & H. Wallander. 1998. Interactions between ectomycorrhizal fungi and the bacterial community in soils with applications of different primary minerals. FEMS Microbiology Ecology 27: 195–205.

    Article  CAS  Google Scholar 

  • ———, M. Chalot, E. Baath, R. Finaly & B. Soderstrom. 1996. Ectomycorrhizal mycelia reduce bacterial activity in a sandy soil. FEMS Microbiology Ecology 21: 77–86.

    Article  CAS  Google Scholar 

  • Paris, F., B. Botton & F. Lapeyrie. 1996. In vitro weathering of phlogopite by ectomycorrhizal fungi. II. Effect of K+ and Mg2+ deficiency and N sources on accumulation of oxalate and H+. Plant and Soil 179: 141–150.

    Article  CAS  Google Scholar 

  • Parlade, J., J. Luque, J. Pera & A. Rincon. 2004. Field performance of Pinus pinea and P. halepensis seedlings inoculated with Rhizopogon spp. and outplanted in formerly arable land. Ann. For. Sci. 61: 507–514.

    Article  Google Scholar 

  • Paul, E. A. & F. E. Clark. 1989. Soil microbiology and biochemistry. Academic Press, London.

    Google Scholar 

  • Perez-Moreno, J. & D. J. Read. 2001. Exploitation of pollen by mycorrhizal mycelial systems with special reference to nutrient recycling in boreal forests. Proceedings of the Royal Society of London Series B-Biological Sciences 268: 1329–1335.

    Article  CAS  Google Scholar 

  • ——— & ———. 2000. Mobilization and transfer of nutrients from litter to tree seedlings via the vegetative mycelium of ectomycorrhizal plants. New Phytologist 145: 301–309.

    Article  CAS  Google Scholar 

  • Perrin, R. & J. Garbaye. 1983. Influence of ectomycorrhizae on infectivity of Pythium-infected soils and substrates. In: Tree root systems and their mycorrhizas. Atkinson, D. (Ed). Nijhoff/Junk, the Hague. Plant and Soil 71: 345–351.

  • Perry, D. A., H. Margolis, C. Choquette, R. Molina & J. M. Trappe. 1992. Ectomycorrhizal mediation of competition between coniferous tree species. New Phytologist 112: 501–511.

    Article  Google Scholar 

  • Peskova, V. 2005. Dynamics of oak mycorrhizas. Journal of Forest Science 51: 259–267.

    Google Scholar 

  • Pilz, D. P. & D. A. Perry. 1984. Impact of clearcutting and slash burning on ectomycorrhizal associations of Douglas fir seedlings. Canadian Journal of Forest Research 14: 94–100.

    Article  Google Scholar 

  • Plassard, C., B. Bonafos & B. Touraine. 2000. Differential effects of mineral and organic N sources, and of ectomycorrhizal infection by Hebeloma cylindrosporum, on growth and N utilization in Pinus pinaster. Plant Cell and Environment 23: 1195–1205.

    Article  Google Scholar 

  • Porcel, R., R. Aroca, R. Azcon & J. M. Ruiz-Lozano. 2006. PIP aquaporin gene expression in arbuscular mycorrhizal Glycine max and Lactuca sativa plants in relation to drought stress tolerance. Plant Molecular Biology 60: 389–404.

    Article  PubMed  CAS  Google Scholar 

  • Probanza, A., J. L. Mateos, J. A. Lucas-Garcıa, B. Ramos, M. R. de Felipe & F. J. Gutierrez-Manero. 2001. Effects of inoculation with PGPR Bacillus and Pisolithus tinctorius on Pinus pinea L. growth, bacterial rhizosphere colonisation and mycorrhizal infection. Microbial Ecology 41: 140–148.

    PubMed  CAS  Google Scholar 

  • Querejeta, J. I., L. M. Egerton-Warburton & M. F. Allen. 2007. Hydraulic lift may buffer rhizosphere hyphae against the negative effects of severe soil drying in a California Oak savanna. Soil Biology & Biochemistry 39: 409–417.

    Article  CAS  Google Scholar 

  • ———, ——— & ———. 2003. Direct nocturnal water transfer from oaks to their mycorrhizal symbionts during severe soil drying. Oecologia 134: 55–64.

    Article  PubMed  Google Scholar 

  • Quoreshi, A. M., Y. Piché & D. P. Khasa. 2008. Field performance of conifer and hardwood species five years after nursery inoculation in the Canadian Prairie Provinces. New For. 35: 235–253.

    Article  Google Scholar 

  • Ramesh, G., R. Sweera & M. S. Reddy. 2008. Enhancement of laccase in ectomycorrhizal fungus Hebeloma cylindrosporum in presence of different substrates. Advances in Environmental Biology 2: 115–120.

    CAS  Google Scholar 

  • Rao, M. A., L. Gianfreda, F. Palmiero & A. Violante. 1996. Interaction of acid phosphatase with clays, organic molecules and organic mineral complexes. Soil Science 161: 751–760.

    Article  CAS  Google Scholar 

  • Read, D. J., J. R. Leake & J. And Perez-Moreno. 2004. Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes. Canadian Journal of Botany 82: 1243–1263.

    Article  CAS  Google Scholar 

  • ——— & J. Perez-Moreno. 2003. Mycorrhizas and nutrient cycling in ecosystems-a journey towards relevance? New Phytologist 157: 475–492.

    Article  Google Scholar 

  • ——— & R. Boyd. 1986. Water relations of mycorrhizal fungi and their host plants. Pp 287–303. In: P. B. L. Ayres (ed). Water, Fungi and Plants. Cambridge University Press, Cambridge.

    Google Scholar 

  • Rineau, F., P. E. Courty, S. Uroz, M. Buee & J. Garbaye. 2008. Simple microplate assays to measure iron mobilization and oxalate secretion by ectomycorrhizal tree roots. Soil Biology & Biochemistry 40: 2460–2463.

    Article  CAS  Google Scholar 

  • Robinson, D. & A. Fitter. 1999. The magnitude and control of carbon transfer between plants linked by a common mycorrhizal network. Journal of Experimental Botany 50: 9–13.

    CAS  Google Scholar 

  • Rosling, A. & R. D. Finlay. 2005. Response of different ectomycorrhizal fungi to mineral substrates. Geochimica et Cosmochimica acta 69: 222–232.

    Google Scholar 

  • Ruiz-Lozano, J. M., R. Porcel & R. Aroca. 2006. Does the enhanced tolerance of arbuscular mycorrhizal plants to water deficit involve modulation of drought induced plant genes? New Phytologist 171: 693–698.

    Article  PubMed  CAS  Google Scholar 

  • Sarand, I., H. Haario, K. S. Jorgensen & M. Romantschuk. 2000. Effect of inoculation of a TOL plasmid containing mycorrhizosphere bacterium on development of Scots pine seedlings, their mycorrhizosphere and the microbial flora in m-toluate amended soil. FEMS Microbiology Ecology 31: 127–141.

    Article  PubMed  CAS  Google Scholar 

  • ———, S. Timonen, T. Koivula, R. Peltola, K. Haahtela, R. Sen & M. Romantschuk. 1999. Tolerance and biodegradation of m-toluate by Scots pine, a mycorrhizal fungus and fluorescent pseudomonads individually and under associative conditions. Journal of Applied Microbiology 86: 817–826.

    Article  PubMed  CAS  Google Scholar 

  • ———, ———, E. L. Nurmiaho- Lassila, T. Koivula, K. Haahtela, M. Romantschuk & R. Sen. 1998. Microbial biofilms and catabolic plasmid harbouring degradative fluorescent pseudomonads in Scots pine mycorrhizospheres developed on petroleum contaminated soil. FEMS Microbiology Ecology 27: 115–126.

    Article  CAS  Google Scholar 

  • Schier, G. & C. McQuattie. 1995. Effect of aluminium on the growth, anatomy, and nutrient content of ectomycorrhizal and nonmycorrhizal eastern white pine seedlings. Canadian Journal of Forest Reserch 25: 1252–1262.

    Article  CAS  Google Scholar 

  • ——— & ———. 1996. Response of ectomycorrhizal and nonmycorrhizal pitch pine (Pinus rigida) seedlings to nutrient supply and aluminium: Growth and mineral nutrition. Canadian Journal of Forest Reserch 26: 2145–2152.

    Article  Google Scholar 

  • Schrey, S. D., M. Schellhammer, M. Ecke, R. Hampp & M. T. Tarkka. 2005. Mycorrhiza helper bacterium Streptomyces AcH 505 induces differential gene expression in the ectomycorrhizal fungus Amanita muscaria. New Phytologist 168: 205–216.

    Article  PubMed  CAS  Google Scholar 

  • Sen, R. 2001. Multitrophic interactions between a Rhizoctonia sp. and mycorrhizal fungi affect Scots pine seedling performance in nursery soil. New Phytologist 152: 543–553.

    Article  CAS  Google Scholar 

  • Shi, L., M. Guttenberge, I. Kottke & R. Hampp. 2002. The effect of drought on mycorrhizas of beech (Fagus sylvatica L.): changes in community structure, and the content of carbohydrates and nitrogen storage bodies of the fungi. Mycorrhiza 12: 303–311.

    Article  PubMed  CAS  Google Scholar 

  • Simard, S. W., M. D. Jones, D. M. Durall, D. A. Perry, D. D. Myrold & R. Molina. 1997a. Reciprocal transfer of carbon isotopes between ectomycorrhizal Betula papyrifera and Pseudotsuga menziesii. New Phytologist 137: 529–542.

    Article  CAS  Google Scholar 

  • ———, D. A. Perry, M. D. Jones, D. D. Myrold, D. M. Durall & R. Molina. 1997b. Net transfer of carbon between ectomycorrhizal tree species in the field. Nature (London) 388: 579–582.

    Article  CAS  Google Scholar 

  • Smith, S. E. & D. J. Read. 1997. Mycorrhizal Symbiosis. Academic Press, San Diego, CA.

    Google Scholar 

  • ——— & ———. 2008. Mycorrhizal Symbiosis, third (Eds). Academic Press, London.

    Google Scholar 

  • Soderstrom, B. 2002. Challenges for mycorrhizal research into the new millennium. Plant and Soil 244: 1–7.

    Article  Google Scholar 

  • Stack, R. W. & W. A. Sinclair. 1975. Protection of Douglas-fir seedlings against Fusarium root rot by a mycorrhizal fungus in the absence of mycorrhiza formation. Phytopathology 65: 468–472.

    Article  Google Scholar 

  • Stahl, P. D., M. Christensen & S. E. Williams. 1990. Population variation in the mycorrhizal fungus Glomus mosseae: Uniform garden experiments. Mycological Research 94: 1070–1076.

  • Stendell, E. R., T. R. Horton & T. D. Bruns. 1999. Early effects of prescribed fire on the structure of the ectomycorrhizal fungal community in a Sierra Nevada ponderosa pine forest. Mycological Research 103: 1353–1359.

    Article  Google Scholar 

  • Sun, Y. P., T. Unestam, S. D. Lucas, K. J. Johanson, L. Kenne & R. D. Finlay. 1999. Exudation–reabsorption in mycorrhizal fungi, the dynamic interface for interaction with soil and other microorganisms. Mycorrhiza 9: 137–144.

    Article  CAS  Google Scholar 

  • Tahara, K., M. Norisada, T. Tange, H. Yagi & K. Kojima. 2005. Ectomycorrhizal association enhances Al tolerance by inducing citrate secretion in Pinus densiflora. Soil Science and Plant Nutrition 51: 397–403.

    Article  CAS  Google Scholar 

  • Talbot, J. M., S. D. Allison & K. K. And Treseder. 2008. Decomposers in disguise: mycorrhizal fungi as regulators of soil C dynamics in ecosystem under global change. Functional ecology 22: 955–963.

    Article  Google Scholar 

  • Taylor, A. F. S. & I. J. Alexander. 2005. The ectomycorrhizal symbiosis: life in the real world. Mycologist 19: 104–112.

    CAS  Google Scholar 

  • ———, G. Gebauer & D. J. Read. 2004. Uptake of nitrogen and carbon from double-labelled 15N and 13C glycine by mycorrhizal pine seedlings. New Phytologist 164: 383–388.

    Article  CAS  Google Scholar 

  • Teste, F. P. & S. W. Simard. 2008. Mycorrhizal networks and distance from mature trees alter patterns of competition and facilitation in dry Douglas-fir forests. Oecologia 158: 193–203.

    Article  PubMed  Google Scholar 

  • ———, ——— & D. M. Durall. 2009. Role of mycorrhizal networks and tree proximity in ectomycorrhizal colonization of planted seedlings. Fungal Ecology 2: 21–30.

    Article  Google Scholar 

  • Tibbett, M., K. Grantham, F. E. Sanders & J. W. G. Cairney. 1998a. Induction of cold active phosphomonoesterase activity at low temperature in psychrotrophic ectomycorrhizal Hebeloma spp. Mycological Reserch 102: 1533–1539.

    Article  CAS  Google Scholar 

  • ———, F. E. Sanders & J. W. G. Cairney. 1998b. The effect of temperature and inorganic phosphorus supply on growth and acid phosphatase production in arctic and temperate strains of ectomycorrhizal Hebeloma spp. in axenic culture. Mycological Reserch 102: 129–135.

    Article  CAS  Google Scholar 

  • ———, ———, ——— & J. R. Leake. 1999. Temperature regulation of extracellular proteases in ectomycorrhizal fungi Hebeloma spp. grown in axenic culture. Mycological Research 102: 1533–1539.

    Article  Google Scholar 

  • Toro, M., R. Azcon & J. Barea. 1997. Improvement of arbuscular mycorrhiza development by inoculation of soil with phosphate-solubilizing rhizobacteria to improve rock phosphate bioavailability (32P) and nutrient cycling. Applied and Environmental Microbiology 63: 4408–4412.

    PubMed  CAS  Google Scholar 

  • Treseder, K. K. 2004. A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytologist 164: 347–355.

    Article  Google Scholar 

  • ———, M. F. Allen, R. W. Ruess, K. S. Pregitzer & R. L. Hendrick. 2005. Lifespans of fungal rhizomorphs under nitrogen fertilization in a pinyone-juniper woodland. Plant and Soil 270: 249–255.

    Article  CAS  Google Scholar 

  • ———, M. S. Torn & C. A. Masiello. 2006. An ecosystem-scale radiocarbon tracer to test use of litter carbon by ectomycorrhizal fungi. Soil Biology and Biochemistry 38: 1077–1082.

    Article  CAS  Google Scholar 

  • Turner, B. L., I. D. Mc Kelvie & P. M. Haygarth. 2002. Characterization of water-extractable soil organic phosphorus by phosphate hydrolysis. Soil Biol. Biochem. 34: 27–35.

    Article  CAS  Google Scholar 

  • Twieg, B., D. M. Durall & S. W. Simard. 2007. Ectomycorrhizal fungal succession in mixed temperate forests. New Phytologist 176: 437–447.

    Article  PubMed  Google Scholar 

  • Uroz, S., C. Calvaruso, M. P. Turpault & P. Frey-Klett. 2009. Mineral weathering by bacteria: ecology, actors and mechanisms. Trends in Microbiology 17: 378–387.

    Article  PubMed  CAS  Google Scholar 

  • ———, ———, ———, J. C. Pierrat, C. Mustin & P. Frey-Klett. 2007. Effect of the mycorrhizosphere on the genotypic and metabolic diversity of the soil bacterial communities involved in mineral weathering in a forest soil. Applied and Environmental Microbiology 73: 3019–3027.

    Article  PubMed  CAS  Google Scholar 

  • Van Breeman, N., R. Finlay, U. Lundstrom, A. Jongmans, R. Giesler & M. Olsson. 2000. Mycorrhizal weathering: A true case of mineral plant nutrition? Biochemistry 49: 53–67.

    Google Scholar 

  • Van den Driessche, R. 1991. Pp 229–260. Effects of nutrients on stock performance in the forest. In: Mineral nutrition of conifer seedlings. CRC, Boca Ration, FL/Ann Arbor, MI/Boston, MA.

    Google Scholar 

  • van Hees, P. A. W., D. L. Godbold, G. Jentschke & D. L. Jones. 2003. Impact of ectomycorrhizas on the concentration and biodegradation of simple organic acids in a forest soil. European Journal of Soil Science 54: 697–706.

    Article  Google Scholar 

  • ———, A. Rosling & R. D. Finlay. 2006. The impact of trees, ectomycorrhizal and potassium availability on simple organic compounds and dissolved organic carbon in soil. Soil Biology & Biochemistry 38: 1912–1923.

    Article  CAS  Google Scholar 

  • van Scholl, L., M. M. Smits & E. Hoffland. 2006. Ectomycorrhizal weathering of the soil minerals muscovite and hornblende. New Phytologist 171: 805–814.

    Article  PubMed  CAS  Google Scholar 

  • Varese, G. C., S. Portinaro, A. Trotta, S. Scannerini, A. M. Luppi-Mosca & G. Martinotti. 1996. Bacteria associated with Suillus grevillei sporocarps and ectomycorrhizae and their effects on Invitro growth of mycobiont. Symbiosis 21: 129–147.

    Google Scholar 

  • Wallander, H. 2006. External mycorrhizal mycelia the importance of quantification in natural ecosystems. New Phytologist 171: 240–242.

    Article  PubMed  Google Scholar 

  • ——— 2000a. Uptake of P from apatite by Pinus sylvestris seedlings colonized by different ectomycorrhizal fungi. Plant and Soil 218: 249–256.

    Article  CAS  Google Scholar 

  • ——— 2000b. Use of strontium isotopes and foliar K content to estimate weathering of biotite induced by pine seedlings colonised by ectomycorrhizal fungi from two different soils. Plant and Soil 222: 215–229.

    Article  CAS  Google Scholar 

  • ——— & T. Wickman. 1999. Biotite and microcline as potassium sources in ectomycorrhizal and non-mycorrhizal Pinus sylvestris seedlings. Mycorrhiza 9: 25–32.

    Article  CAS  Google Scholar 

  • ———, L. Johansson & J. Pallon. 2002. PIXE analysis to estimate the elemental composition of ectomycorrhizal rhizomorphs grown in contact with different minerals in forest soil. FEMS Microbiology Ecology 39: 147–156.

    Article  PubMed  CAS  Google Scholar 

  • ———, S. Mahmood, D. Hagerberg & L. Johansson. 2003. Elemental composition of ectomycorrhizal mycelia identified by PCR-RFLP analysis and grown in contact with apatite or wood ash in forest soil. FEMS Microbiology Ecology 44: 57–65.

    PubMed  CAS  Google Scholar 

  • Waters, J. R., K. S. McKelvey, C. J. Zabel & W. W. Oliver. 1994. The effects of thinning and broadcast burning on sporocarp production of hypogeous fungi. Canadian Journal of Forest Research 24: 1516–1522.

    Article  Google Scholar 

  • Wu, L., A. D. Jacobson & M. Hausner. 2008. Characterization of elemental release during microbe-granite interactions at T = 28 °C. Geochimica et Cosmochimica Acta 72: 1076–1095.

    Article  CAS  Google Scholar 

  • Yuan, L., J. G. Huang, X. L. Li & P. Christie. 2004. Biological mobilization of potassium from clay minerals by ectomycorrhizal fungi and eucalypt seedlings roots. Plant and Soil 262: 351–361.

    Article  CAS  Google Scholar 

  • Zhu, H., B. P. Dancik & K. O. Higginbotham. 1994. Regulation of extracellular proteinase production in an ectomycorrhizal fungus Hebeloma crustuliniforme. Mycologia 86: 227–234.

    Article  CAS  Google Scholar 

  • ———, D. Guo & B. P. Dancik. 1990. Purification and characterization of an extracellular acid proteinase from the ectomycorrhizal fungus, Hebeloma crustiliniforme. Applied and Environmental Microbiology 56: 837–743.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors are highly grateful to the Department of Biotechnology, Government of India for providing financial grant for the conduct of research. The authors are also thankful to head department of Botany University of Kashmir, Srinagar for his support and guidance during research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahoor Ahmad Itoo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Itoo, Z.A., Reshi, Z.A. The Multifunctional Role of Ectomycorrhizal Associations in Forest Ecosystem Processes. Bot. Rev. 79, 371–400 (2013). https://doi.org/10.1007/s12229-013-9126-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12229-013-9126-7

Keywords

Navigation